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Abstract

Certain extremum estimators have asymptotic distributions that are non-Gaussian, yet char-
acterizable as the distribution of the arg max of a Gaussian process. This paper presents high-
level sufficient conditions under which such asymptotic distributions admit a continuous distri-
bution function. The plausibility of the sufficient conditions is demonstrated by verifying them
in three examples, namely maximum score estimation, empirical risk minimization, and thresh-
old regression estimation. In turn, the continuity result buttresses several recently proposed
inference procedures whose validity seems to require a result of the kind established herein. A
notable feature of the high-level assumptions is that one of them is designed to enable us to
employ the Cameron-Martin theorem. In a leading special case, the assumption in question is

demonstrably weak and appears to be close to minimal.
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1 Introduction

Certain extremum estimators have asymptotic distributions that are non-Gaussian, yet characteri-
zable as the distribution of the arg max of a Gaussian process. To fix ideas, letting 8y € R? denote

a parameter (vector) of interest, the estimators 6,, in question satisfy

(0, — 6g) ~ arg max G(s), (1)
seRd

where n is the sample size, 1, is a rate of convergence, ~ denotes weak convergence (as n — 00),
and G is a Gaussian process admitting a unique maximizer (over R?) whose distribution is non-
Gaussian. The seminal work of Kim and Pollard (1990) was concerned with (cube root asymptotic)
cases where r, = </n and the mean function of G is a quadratic form, but subsequent work (e.g.,
Hansen, 2000; Lai and Lee, 2005; Lee, Liao, Seo, and Shin, 2021; Lee and Pun, 2006; Lee and Yang,
2020; Westling and Carone, 2020; Yu and Fan, 2021) has documented the relevance of allowing for
the extra flexibility afforded by the more general formulation in (1).

Letting p and C denote the mean function and covariance kernel of G and defining

Fi(t) =P[5 < t], § = argmax §(s), (2)
seRd

our goal in this paper is to give conditions on p and C that imply continuity of Fz. Continuity of
F} is useful when the goal is to use 6., to construct confidence regions. For instance, van der Vaart
(1998, Lemma 23.3) assumes continuity when establishing validity of bootstrap-based confidence
intervals; see also Politis, Romano, and Wolf (1999, Section 1.2). Moreover, and relatedly, it
follows from Polya’s theorem that if (1) holds and if Fj is continuous, then the the probability laws
of rn(én — 6y) converge to the law with distribution function Fz not only in the bounded Lipschitz
metric (or any other metric metrizing weak convergence), but also in the Kolmogorov metric; that

is, we have a result of the form

sup
tcRd

P[rn(@n —6y) < t} - Fg(t)‘ 0. (3)

When p is a quadratic form and C is a bilinear form, the distribution of § is Gaussian. More
generally, under mild conditions on p the distribution of § is that of a transformation of a Gaussian
vector when C is a bilinear form, implying in particular that the properties of Fj can be deduced by
means of a change of variables argument. T'wo other special cases where a complete characterization
of Fy is available are when d = 1, C is the covariance kernel of a two-sided Brownian motion, and
w is proportional to either the absolute value function or the square function. In both cases, the
distribution of § is that of a scalar multiple of a random variable with a well-known continuous
distribution. Somewhat more generally, Cattaneo, Jansson, and Nagasawa (2024, Lemma A.2)
gave conditions on p under which Fj is continuous when d = 1 and C is the covariance kernel of

a two-sided Brownian motion. On the other hand, little (if anything) appears to be known about



the properties of Fz when d > 1 and C is not bilinear.

In this paper we close this gap by presenting sufficient conditions for continuity of Fj that
do not require d = 1 and are applicable (only) when C is not bilinear. Proceeding under the
assumption that d = 1, the proof of Cattaneo et al. (2024, Lemma A.2) establishes continuity
of Fy by showing that the distribution of § is atomless (under the additional assumptions of the
lemma). The method of proof can be adapted to give conditions under which the distribution of §
is atomless also when d > 1, but when d > 1 a distribution can be atomless even if the associated
distribution function is discontinuous. Establishing continuity of F3 when d > 1 therefore requires
a fundamentally different method of proof than that employed by Cattaneo et al. (2024, Lemma
A.2). The differences in proof strategies are reflected also in the assumptions under which the
proofs proceed. Notably, one of the conditions imposed in this paper explicitly involves both u and
C and requires that for every N € N, restriction of G to [~N, N]% has a mean function that belongs
to the reproducing kernel Hilbert space (RKHS) of its covariance kernel. By the Cameron-Martin
theorem, if a Gaussian process has a mean belonging to the RKHS of its covariance kernel, then
its induced probability measure and the probability measure induced by its centered version are
mutually absolutely continuous. The proof of our main result uses this fact and an assumed shift
equivariance property of the covariance kernel to deduce continuity of Fj.

The usefulness of our main result is illustrated by applying it to three examples: maximum
score estimation, empirical risk minimization, and threshold regression estimation. Each example
involves an estimator satisfying (1) with d possibly greater than one and a covariance kernel that
is not bilinear. Although distinct in several ways, the examples enjoy the common feature that
continuity of F3 can be shown by verifying the conditions of our main result. In particular, the
condition that the mean function belongs to the RKHS of the covariance kernel can be verified by
following a general strategy outlined in Lifshits (1995). In words, the strategy is to characterize
the RKHS as the range of an integral operator applied to a carefully chosen Lo space. To show
that the mean function p belongs to the RKHS, one simply finds an element of the Lo space that
maps to u; for details, see Section 4.3.1.

In addition to facilitating the justification of certain large-sample inference procedures based
on distributional approximations of the form (1), our paper sheds new light on the canonical
problem of characterizing the distributional properties of the arg max of a Gaussian process. That
problem is substantially different from the well-studied problem of understanding the distributional
properties of the maximum itself, where the d = 1 case is mostly settled (e.g., Lifshits, 1995, and
references therein), the multidimensional case is fairly well understood (e.g., Azais and Wschebor,
2005, and references therein), and where, more generally, continuity of the distribution function of
the maximum can be established with the help of anti-concentration results (e.g., Chernozhukov,
Chetverikov, and Kato, 2015). However, as noted by Samorodnitsky and Shen (2013, p. 3494),
“very little is known about the random location of the supremum” of a Gaussian process. In
the multidimensional case, we are only aware of Azals and Chassan (2020), which shows that the

distribution admits a density under the assumption that the sample paths are twice differentiable.



The latter assumption is violated in our motivating examples, all of which involve processes whose
sample paths are (Holder) continuous but nowhere differentiable.

The remainder of the paper proceeds as follows. Section 2 introduces our three examples. Our
main result is presented in Section 3, while Section 4 outlines a general strategy for verifying the
conditions of the main result and demonstrates how to apply it in the examples. Finally, Section

5 compares our results with the known results alluded to in the third paragraph of this section.

2 DMotivating Examples

The class of estimators satisfying (1) is broad, encompassing numerous applications in econometrics,
statistics, and data science. To motivate our theoretical contribution, this section details three
representative examples. We will demonstrate how our results can be used to establish sufficient
conditions guaranteeing the continuity of (2), thereby ensuring validity of both existing and future

inference procedures relying on that continuity property.

2.1 Maximum Score

Suppose {(yi, w;,x;)'}"_; is a random sample from the distribution of a vector (y,w,x")" generated

by the semiparametric binary response model
y=1{w+x'0g > u}, Median(u|w, x) = 0,

where 1{-} is the indicator function, w,u € R and x € R? are random variables, and 8y € © C R?
is the parameter of interest. Manski (1975) introduced the maximum score estimator of 6y, which

is any maximizer 6,, of
n

> @2y — D1{w; +x0 > 0}
=1

with respect to 6 € ©. Using the methods of Kim and Pollard (1990), Abrevaya and Huang (2005)
gave regularity conditions under which (1) holds with r, = ¢/n and G being a Gaussian process

whose mean function and covariance kernel take the form
IU(S) = _S/E [fu|w,x(0| - X,007X)fw|x(_X/00’X)XX/] S

and
C(5,t) = E [ fue(—X'00]x)Can(x's, x't)] ,

respectively, where f,,,x and f,x denote conditional (Lebesgue) densities, and where Cpy is the

covariance kernel of a two-sided standard Brownian motion; that is,

Cau(s, t) = min{|s|, [[} 1{sgn(s) = sgn(?)},



with sgn(-) denoting the sign function.

When d = 1, because p is quadratic and C is a scalar multiple of Cgy, it follows from van der Vaart
and Wellner (2023, Exercise 3.2.5) that the distribution of § is that of a scalar multiple of a random
variable with a well-known continuous distribution, namely the Chernoff (1964) distribution. For
d > 1, on the other hand, it would appear to be an open question whether Fj is continuous. We
provide an affirmative answer to that question below, hereby buttressing a variety of inference
procedures based on the maximum score estimator.

For specificity, consider the procedure of Cattaneo, Jansson, and Nagasawa (2020). That paper

proposed a bootstrap-based estimator é;"l and gave conditions under which this estimator satisfies

rn (0 — 6,) ~>p arg max G(s),
seRd

where ~»p denotes weak convergence in probability. Because Fj is continuous, the displayed result

can be combined with (1) to yield a bootstrap consistency result of the form

sup
tcRd

P [é;—éngt}—P[én—eogt”—)ﬂmo,

where P} is the bootstrap probability measure. As a consequence, for any A € R?, defining
Gin(t) = inf {q ER:PENG: — N, <q > t} . te(0,1),
van der Vaart (1998, Lemma 23.3) shows that the equal-tailed “percentile” interval
Clan(l =) = [N — a3,,(1 - a/2) , X0 — a3,4(0/2)]
is a confidence interval (for A'8) of asymptotic level 1 — a:

nli_}n;OIP) N6y e Cly,,(1-a)] =1-a.

With minor modifications, analogous conclusions apply to inference procedures based on the dis-
tributional approximations proposed by Delgado, Rodriguez-Poo, and Wolf (2001), Hong and Li
(2020), Jun, Pinkse, and Wan (2015), and Patra, Seijo, and Sen (2018). The theory developed in
this paper can therefore be used to establish asymptotic validity of those inference methods.

Alternative approaches to inference in semiparametric binary response models include those of
Horowitz (1992) and Rosen and Ura (2025). Because the smoothed maximum score estimator of
Horowitz (1992) is asymptotically normal, albeit under stronger assumptions than those required
for the maximum score estimator to satisfy (1), the distribution function Fj is continuous, and
standard Wald-type inference procedures are valid. By contrast, the inference procedure proposed
by Rosen and Ura (2025) is finite-sample valid and therefore does not rely on continuity of Fg,

while generally yielding partial rather than point identification.



2.2 Empirical Risk Minimization

Mohammadi and van de Geer (2005) considered the classification problem of estimating the mini-
mizer Oy € © C R? of the classification error P[y # hg(z)] with respect to @ € ©, where y € {—1,1}
is a binary outcome, z € X C R is a scalar feature, and {hg : @ € O} is a collection of classifiers.
Given a random sample {(y;,x;)}?_; from the distribution of (y,z), an empirical risk minimizer is

a minimizer 6,, of
n

> 1y # ho(w:)}.

i=1

Setting X = [0, 1] and specializing to the case where the classifiers are of the form

d+1
ho(x) =Y (=1)'1{0—1 < = < 0;}
=1
for 8 = ((91,...,(9d), €0 = {9 S [0,1]d : 0 = 90 < (91 < ... < 9d < 9d+1 = 1}, Mohammadi and
van de Geer (2005, Theorem 1) gave conditions under which (1) holds with r, = /n and G being

a Gaussian process whose mean function and covariance kernel take the form

d
ps) = pelse),  puelse) = (—=1)"p(00,0) £ (Bo0)s7, (4)
(=1
and .
Cls,t) = Culsete),  Cel(se,te) = f(Bo,0)Cau(se te), (5)
/=1

respectively, where 6y = (0o.1,...,6004)',s = (s1,...,84)’,t = (t1,...,tq)’", [ is a Lebesgue density
of z, p(x) = dPly = 1|z|/dz, and where the assumptions imposed on the model ensure that
(—1)Zp(00,g)f(9074) <0 for every £ =1,...,d.

This example is similar to the maximum score example insofar as when d = 1, the distribution
of § is that of a scalar multiple of a random variable with a Chernoff distribution. In fact, also when
d > 1, the elements of § = (51, ..., §4) are mutually independent, each having a distribution which is
that of a scalar multiple of a random variable with a Chernoff distribution. Indeed, letting Gy, ..., Gy
be mutually independent Gaussian processes with mean functions puq, ..., ug and covariance kernels

C1,...,Cq, respectively, G admits the representation G(s) = 2?21 Gu(sp), implying in particular that

S = arg max Gy(sy) for each £ € {1,...,d}.
se€R
In other words, this example has special structure that can be used to obtain a definitive
characterization of the distribution of § without utilizing new tools. It is nevertheless of interest
to explore the ease with which the technology developed in this paper can be deployed to establish
continuity of Fy in this example. In particular, it is of interest to explore whether the (effective)

“dimension reduction” permitted by this example can be leveraged when verifying the conditions



of Theorem 1 below.

2.3 Threshold Regression

Consider the threshold regression model
y=xBo+x'8,1{q > w0y} + u, E(ulx,q,w) =0,

where y € R is a dependent variable, x € R¥ is a (possibly) vector-valued regressor, ¢ is a threshold
variable, w € R is a (possibly) vector-valued factor governing the threshold cutoff, and where,
borrowing ideas from the change-point literature (e.g., Bai, 1997), d,, is a “threshold effect” whose
magnitude vanishes with n. The present model (as well as distinct generalizations thereof) has
been studied by Lee, Liao, Seo, and Shin (2021) and Yu and Fan (2021), and differs from the model
considered in Hansen (2000) by allowing the factor w to be non-constant.

/
%

estimator (3/,,8/,,6.,) of (3),8.,6}) is a minimizer of

Given a random sample {(y;, X}, ¢;, w})'}_, from the distribution of (y,x’, ¢, w’)’, a least squares

n

> (v —xiB - xi51{g: > w}6})*

i=1
over (3,4',0') € R?+d Assuming ||6,| — 0, n||6,]|> = oo, and 8,, = 8,/||0,| — & (for some
0 €S = {6 € R?: |§|]| = 1}), Yu and Fan (2021) gave conditions under which (1) holds with
T = n||6,)|> and G = G(-; §) being a Gaussian process whose mean function and covariance kernel
take the form

_ 1_ _
() = p(5:8) = — 5 8B [[W's| s (W' [W)E. | X' |W'60, w]] &

and
C(s,t) =C(s,t;6) = 6'E [fq|w(W’OOIW)EMM[xx'u2|wlt90,W]CBM(w's,w't)] J,

respectively, where E |, i, denotes conditional expectation.

When d = 1, the distribution of § is that of a scalar multiple of a random variable with a
(known) continuous distribution (e.g., Section 3.2 of Hansen, 2000). For d > 1, on the other hand,
it would appear to be an open question whether Fj is continuous. We provide an affirmative answer

to that question below.

Remark. As a by-product, continuity of the limiting distribution function can be used to show

that if |8, — 0 and if n||8,]|?> — oo, then (whether or not &, is convergent in S?~!) we have

sup — 0.

tcRd

P [Tn(én —0p) < t} —P [arg mdax G(s;6,) < t]
seR




3 Main Result

As before, let G be a Gaussian process on R? with mean function p and covariance kernel C. Also,
for any N € N, let Gy be the restriction of G to [~N, N]%, let uy and Cx be the mean function
and covariance kernel of Gy, and let #% be the RKHS of Cy (as defined in Section 2.6.1 of Giné
and Nickl, 2016).

The following high-level assumption holds in each of the examples of Section 2.
Assumption 1.
(i) With probability one, G has continuous sample paths and admits a mazimizer over R

(ii) For anys,t € R and any h € R4\{0}, C(h,h) > 0 and

Ch+s,h+t)—C(h+s,h)—C(hh+t)+C(h h) =C(s,t).

(iii) For any N € N, un € Hy.

Part (i) guarantees existence (with probability one) of a maximizer of G over R, and over any
compact set S C R?. By Kim and Pollard (1990, Lemma 2.6), these maximizers are unique provided
VIG(s) — G(t)] # 0 for every s # t. Part (i) gives sufficient conditions for this non-degeneracy
condition to hold and furthermore implies that the centered process G* = G — i is shift equivariant
in the sense that the law of the process G*(h + -) — G#(h) is the same for every h € R%. An
immediate implication of shift equivariance is that V[G(0)] = 0. A slightly more subtle implication

is recorded in the following lemma.

Lemma 1. Suppose G has continuous sample paths and suppose Assumption 1(ii) holds. For any

h € R%, any measurable set T C R%, and any compact set S C R?,

P |arg max GH(s) € T] =P [argmaxg“(s) €eT+hj.
sesS s€S+h

Proof of Lemma 1. By change of variables and shifting by a constant,

arg max G¥(s) = argmax GH(h +s) + h = argmax{G*(h +s) — G*(h)} + h.
s€S+h ses sesS

The desired conclusion follows from shift equivariance of G¥. O

By the Cameron-Martin theorem (e.g., Theorem 2.6.13 of Giné and Nickl, 2016), part (%ii) of
Assumption 1 ensures that the probability measures associated with Gy and Q]’f, =GN — un are
mutually absolutely continuous for any N € N. Along with Lemma 1, that property plays a key

role in our proof of the following result.

Theorem 1. Under Assumption 1, Fy in (2) is continuous.



Proof of Theorem 1. For any compact set S C R?, parts (i) and (ii) of Assumption 1 guarantee
existence (with probability one) of a unique maximizer of G# over S, uniqueness being a consequence
of Kim and Pollard (1990, Lemma 2.6). This observation will be used repeatedly without further
mention. The (joint) distribution function of § = (81,...,84)" is continuous if and only if each of
its marginal distribution functions is continuous. Fixing ¢ € {1,...,d} and t € R, the proof can

therefore be completed by showing that
P8, =t] = 0. (6)

Defining N; = [|t[] + 1, letting e, denote the fth standard basis vector of R?, and noting that

{8¢ =t} = {ez argmax G(s) = t} - U {ez argmax G(s) = t} ,

scRd N=N; SE[—N,N}d

a sufficient condition for (6) to hold is that

P |ej, argmax G(s) =t| =0 for every N > Ny.
s€[—N,N]d

By the Cameron-Martin theorem, under Assumption 1(%ii) the displayed condition is equivalent to

P |e, argmax GH(s) =t| =0 for every N > Nj. (7)
s€[—N,N]¢

Fixing N > N; and J > 2, let
15-1 1/5-1
S = ~N,NI%: -N;+ -2~ < g <N +-[2— -1
J {(817 7Sd)€[ ) ] t+2J—1_8£_ t+2(J—1 )}
for j € {1,...,J}. Noting that

[N, NJ* 28 ={(s1,...,84) € [-N,N|*: =N, < 5, < N;} = U/_, S
>Ny 85 ={(s1,...,849) € [-N,N]*: =N, +1/2 < sy < N, — 1/2} = S,

we have

P |e; argmax GH(s) =t| <P |ejargmaxGH(s) =t| <P [ez argmaxGh(s) =t
s€[—N,N}4 seS s€S

J T . 7

1 15—-1
=— P |ejargmaxGH(s) =t + - ———
Jj; _‘f ses; (s) 2J -1
< 1ZJ:IP’ _e' argmax G¥(s) =t + lg_
= J 5 %es 2J -1

W.
[y



el

1 1j-1 .
= j]P’ [e’zargsengaxg“(s) e {t—i— 371 1< < J}] <

where the first equality uses Lemma 1 and the second equality uses uniqueness of the maximizer of
G* over S. Since J > 2 was arbitrary, (7) follows. O

4 Verification of Assumption 1

4.1 Assumption 1 (%)

The continuity part of Assumption 1(i) is mild and usually trivial to verify. Under continuity and
assuming that P[G(0) = 0] = 1, a high-level sufficient condition for existence of a maximizer of G

over R? is that

P

limsupG(s) < 0| = 1. (8)
[|s[|—o00
In turn, proceeding as in the proof of Kim and Pollard (1990, Lemma 2.5) it can be shown that if

the covariance kernel satisfies the (self-similarity) property that for some H > 0,
C(rs,7t) = 72HC(s, 1) for every s,t € R, 7 > 0, (9)

then (8) is implied by the following mild condition on the mean function:

(s)

HSHT‘FG <0 for some € > 0. (10)

lim sup
lIs||—o0

The assumption P[G(0) = 0] = 1 holds if (and only if) x(0) =0 = C(0,0) and is therefore satisfied
in each of the examples of Section 2. Likewise, the conditions (9) and (10) are both fairly primitive.
Also, by inspection, (9) can be seen to hold with H = 1/2 in each of the examples of Section 2.
Moreover, setting H = 1/2, (10) can be seen to hold with ¢ = 3/2 in the maximum score and
empirical risk minimization examples, and with e = 1/2 in the threshold regression example.

To explain why it is no coincidence that the self-similarity property of C holds in the examples

of Section 2, it may be helpful to note that in each case G is the weak limit of a process of the form

[T _
S - 2[mn(zi, 0y + rnls) — mp(2zi, 60)],

where {z;}? ; is a random sample and m,, is some function (possibly depending on n). For instance,
in the threshold regression example we have

mn(z,0) = (y —x'Bo — x'6,1{g > w8},  z=(y,x,q, W)

- 2[|6n]



It therefore stands to reason that C can be characterized as follows:

C(s,t) = lim r,E[{m,(z,00 +r,'s) — mn(z,00)}{mn(z, 00+, t) — mn(z,00)}].

n—oo

To further conclude that (9) holds with H = 1/2, it suffices to assume that the preceding display
admits the following strengthening: for any 1, > 0 with n, = O(r;!),

C(s.t) = lim E[{1mn(2, 00 + 108) — mn(2, 00)}{mn (2, 80 + 1int) — mn (2, 60)}]

n—oo ’)’In

(11)
A characterization of the form (11) is valid in each of the examples of Section 2.

4.2 Assumption 1 (i)

By inspection, the displayed part of Assumption 1(7i) holds in each of the examples of Section 2.

To explain why this is no coincidence, observe that upon defining 6,, = 6y + 1,h we have

E[{mn (2,00 + nn[h + s]) — mn (2, 00) H{mn (2, 60 + 1n[h + t]) — man(z, 60)}]
E[{mn(z, 0 + nu[h + s]) — my(z, 60) }{mn,(z, 00 + n,h) — my,(z,600)}]
E[{mn(z, 60 + nnh) — mn(z, 60) H{mn (2,00 + na[h + t]) — mn(z, 60)}]
E[{mn(z, 0o + n,h) — my(z, 0) }{mn(z, 6y + n,h) — m,(z,60)}]

= E[{mn(z, 0,, + Mns) — my(z, 0,) H{mn(z, 0, + nut) — my(z,60,)}] for any s,t,h € R,

The displayed part of Assumption 1(7i) is therefore valid whenever the following “local uniform”

version of (11) is valid: for any 7, > 0 with 1, = O(r,;!) and any 6,, = 6y + O(n,,),

Cls,t) = lim E[{mn(z, 0, + nns) — my(z, 0,) }{mu(z, 0, + nut) — my,(z,0,,)}] |

n—0o0 7771

(12)
In turn, a characterization of the form (12) is valid in each of the examples of Section 2.

4.3 Assumption 1 (i)

Evaluating Assumption 1(iii) is usually straightforward when #% is known. More generally, a
viable strategy for verifying Assumption 1(iii) can be based on Lifshits (1995, Chapters 6 and 9).
This subsection first outlines that strategy, and then demonstrates its usefulness by employing it

in each of the examples in Section 2.

4.3.1 General Strategy

For N € N, suppose &y = {en(-;s) : s € [-N, N]%} is a model of the covariance kernel Cx (in
the terminology of Chapter 6 of Lifshits, 1995); that is, suppose that for some measure space

10



(Qn, BN, VN), En is a collection of elements of Lo(Qn, By, vn) satisfying
Cn(s,t) = /eN(w;s)eN(w;t)dyN(w) for all s,t € [-N, N]%. (13)

Then, as discussed in Lifshits (1995, Chapter 9), the mean function py belongs to #y if (and only
if) it admits a function I € Lo(Qn, BN, vN) satistying

pun(s) = /eN(w;s)lN(w)dVN(w) for all s € [~ N, N]%. (14)

Lifshits (1995) demonstrates how this strategy can be used to characterize . for several examples
of Gaussian processes. There is no general blueprint for defining &y and Iy satisfying (13)-(14).

We modify the arguments used in Lifshits (1995) to cover our examples.

4.3.2 Example: Maximum Score (Continued)

For N € N, let £y be the Borel g-algebra on Qn = R4 and let vy = A x Py, where \ is the
Lebesgue measure on R and Py is the probability measure induced by x. A direct calculation shows
that (13)-(14) hold with w = (w1,x’)’,

en(w;s) = []l{() <w <Xst+1{x's<w < 0}] \/ fujx (—X00|x),

In(w) = =21{|wi| < NVd||x|[}wt] fupuwx (O] = X0, %)/ fufx(—X'60|x).

and

4.3.3 Example: Empirical Risk Minimization (Continued)

For N € N, let #x be the Borel g-algebra on Qy = R? and let vy be the Lebesgue measure on
RY. Then (13)-(14) hold with w = (w1, . ..,wq)’,

d

en(w;s) = /24Nuy(w) Z ((,ug - \3/2§> [1{0 < wp < s} + 1{/se <we <0}/ f(boy)

/=1

d
In(e) = ) D) S ] (1) (6000 Bo.)
(=1

where uy is a Lebesgue density of the uniform distribution on [—N, N]%.

and

The strategy described in Section 4.3.1 and followed in the previous paragraph is general and
is not designed to leverage the special structure highlighted in Section 2.2. Because it stands to
reason that the additive separability of C induces an analogous simplification of the associated
HN, it seems natural to ask whether such a “tensorization” (is materialized and) can in turn be

exploited when verifying Assumption 1 (7ii).
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The special structure (5) of Cx implies that .y consists of those functions that are of the form
hn(s) = Z?:l he,n(se), with hy n belonging to the RKHS of Cy i for each ¢. Now, proceeding as in
Giné and Nickl (2016, Example 2.6.7) it can be shown that the RKHSs of C1 v, ...,Cq n all (coincide
and) consist of those functions on [—N, N] that are zero-preserving and absolutely continuous with

a square integrable (weak) derivative. In particular, uy € 7% when pu is given by (4).

4.3.4 Example: Threshold Regression (Continued)

For N € N, let Zx be the Borel g-algebra on Qy = R'*? and let vy = A\ x Py, where X is the
Lebesgue measure on R and Py, is the probability measure induced by w. Then (13)-(14) hold with

w = (w1, W),

en(w;s) = [I{w's <w; <0} + 1{0 < wy < wW's}] \/E.|q7w[(3’xu)2\w’00,W]fq‘w(w’00|w)

and

fq|w(W'90\W)
E.jg.w(0'xu)2|w'8, w]

In(w) = —3 1{jur] < w&uwr}E.m,w[((s'x)?rw'eo,wv

5 Discussion of Assumption 1 (%)

Interpreted as a condition on the mean function p, the strength of Assumption 1 (i) is inversely
related to the richness of the RKHSs 7y generated by the covariance kernel C. It seems natural
to ask, therefore, whether certain covariance kernels are so simple that Theorem 1 is silent about
the continuity properties of Fy for many (possibly most) interesting mean functions. Revisiting a
particularly simple covariance kernel, Section 5.1 provides an affirmative answer to that question.

A related, but arguably more interesting, question is whether Assumption 1 (i) is likely to
be “close” to minimal in cases where the covariance kernel generates RKHSs that are sufficiently
rich to contain many (possibly most) interesting mean functions. Revisiting another well-known
covariance kernel, Section 5.2 provides evidence suggesting that the answer to that question will

be affirmative in certain special cases.

5.1 Bilinear Covariance Kernel

Suppose C(s, t) = 't for some (symmetric and) positive definite X; that is, suppose C is a bilinear
form. Then G#(s) = s'G*, where G* = (GH(e1),...,G"(eq)) ~ N(0,%). If also p is a quadratic

form p(s) = —s'T's/2 (for some symmetric and positive definite T'), then

1 . .
§ = arg max {—sTs + S’Q“} =T G ~ N(0,T71ZT 7)),
seRd 2

Thus, this case covers asymptotically normal estimators by writing the normal random limit as the

argmax of a Gaussian process. More generally, under regularity conditions including invertibility

12



of the gradient [ of u, we have § = [Fl(—g'”), implying in turn that the distributional properties
of § can be deduced with the help of standard tools.

In other words, if C is bilinear, then conditions for continuity of Fj can be formulated without
invoking the results of this paper. In fact, it turns out that Theorem 1 is completely silent about the
case where C is bilinear because in that case p satisfies Assumption 1(7:7) if and only if it is a linear
form pu(s) = s'f1 (for some i € R?) , in which case Assumption 1(7) fails because G(s) = s'(j1 + G*)
does not admit a maximizer over R%. To summarize, our results complement existing techniques,
Assumption 1(%ii) being very restrictive precisely when the covariance kernel of G is so simple that

no new methods are needed in order to analyze the distribution of §.

5.2 Two-Sided Brownian Motion

Our motivating examples have the common feature that if d = 1, then C is proportional to Cgy.
More generally, the examples have the feature that for any d, C is a (linear) functional of Cpy, a
feature which in turn would appear to be shared by most other examples of estimators satisfying
(1) with a covariance kernel that is not bilinear. It is therefore of interest to further investigate the
continuity properties of Fj in the special case where G* is a two-sided Brownian motion.

2 > 0. Also in this case

Accordingly, suppose d = 1 and suppose C = 02Cgy for some o
Assumption 1(7i) reduces to a primitive condition on . Indeed, proceeding as in Giné and Nickl
(2016, Example 2.6.7) it can be shown that Assumption 1(7ii) holds if and only if u is zero-preserving
and absolutely continuous with a locally square integrable (weak) derivative.

In the leading special case where
wu(s) = —cls|” for some ¢,y > 0, (15)

Theorem 1 therefore implies that F is continuous whenever v > 1/2. The same condition on =y
is necessary and sufficient in order to deduce continuity of Fyz by applying Cattaneo et al. (2024,

Lemma A.2), which replaces Assumption 1 (7ii) with the Brownian motion-specific assumption

i 208 1) — uls)
70 N4

Maintaining the assumption that G* is a two-sided Brownian motion, but looking beyond mean

=0 for every s € R. (16)

functions of the form (15), the assumption (16) is slightly more general than Assumption 1 (%ii). To

see this, notice on the one hand that if x4 is absolutely continuous with (weak) derivative fi, then

s+n
<\ it

by the Cauchy-Schwarz inequality, so (16) holds if f is locally square integrable. On the other

ST pt)dt
NG

'u(s +n) — p(s)
V1
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hand, the function

s+ —|s|sin (7T/2>

min{1, |s|}
satisfies (16), but is not absolutely continuous (on intervals containing zero).

In other words, in the special case of a two-sided Brownian motion, Assumption 1 (%ii) can be
replaced by a slightly weaker assumption, namely (16), which can accommodate departures from
absolute continuity. What is less clear, but arguably more interesting, is whether Assumption
1(ii1) imposes unduly restrictive constraints on v also when g is of the form (15) near zero. In the
remainder of this section, we attempt to shed light on that question.

When p is of the form (15), the condition v > 1/2 serves dual purposes when verifying the fact
that Fy is continuous. On the one hand, because (9) holds with H = 1/2, the condition v > 1/2
ensures that the tail behavior of p is such that (10) holds. In addition, v > 1/2 is necessary to
ensure that p is sufficiently well behaved near zero that the weak derivative of u is locally square
integrable. To shed more light on Assumption 1 (iii), we disentangle the dual implications of v > 1/2

in (15) by considering the mean function
p(s) = —c|s| min{1,|s|}7 1 for some ¢,y > 0, (17)

which automatically satisfies (10), but satisfies Assumption 1 (i) only when v > 1/2. The following
example shows that every v < 1/2 admits a ¢ = ¢(7y, 02) > 0 such that if u is given by (17), then Fj
is discontinuous, suggesting in turn that for this canonical covariance kernel at least, Assumption

1(#i) is close to minimal in Theorem 1.

Example. Fix v € (0,1/2) and note that with probability one the sample paths of G# are -
Holder continuous on [0, 1] (e.g., Theorem 14.5 (iii) of Kallenberg, 2021). As a consequence, there

exists a constant ¢ = c(y, 0?) such that

<1/4. (18)

P| sup s 7GH(s) > ¢
s€(0,1]

Fixing any such ¢, let G = G* + p, where p is defined as in (17).
By (18), we have

Pse (0,1]] <P [ sup G(s) > 0] =P [ sup s 1GH(s) > c] < 1/4,
s€(0,1] 5€(0,1]

where the first inequality uses G(0) = 0. Similarly,

Pse[l,0)] <P [ sup G(s) > 0] =P [ sup s 1GH(s) > c]

s€[1,00) s€[1,00)

<P [ sup §771GH(s) > c] =P [ sup s77YGH(1/s) > c] < 1/4,
s€[1,00) s€(0,1]
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where the first inequality uses G(0) = 0, the second inequality uses v > 0, and the third inequality
uses (18) and the time inversion property of Brownian motion (e.g., Lemma 14.6 (i) of Kallenberg,
2021). Therefore, P[§ > 0] < P[§ € (0,1]] + P[s € [1,00)] < 1/2. Likewise, P[§ < 0] < 1/2, so
P[§=0] =1—P[s < 0] —P[s > 0] > 0, implying in particular that Fj is discontinuous at zero. _I
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