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Abstract

Certain extremum estimators have asymptotic distributions that are non-Gaussian, yet char-

acterizable as the distribution of the argmax of a Gaussian process. This paper presents high-

level sufficient conditions under which such asymptotic distributions admit a continuous distri-

bution function. The plausibility of the sufficient conditions is demonstrated by verifying them

in three examples, namely maximum score estimation, empirical risk minimization, and thresh-

old regression estimation. In turn, the continuity result buttresses several recently proposed

inference procedures whose validity seems to require a result of the kind established herein. A

notable feature of the high-level assumptions is that one of them is designed to enable us to

employ the Cameron-Martin theorem. In a leading special case, the assumption in question is

demonstrably weak and appears to be close to minimal.
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1 Introduction

Certain extremum estimators have asymptotic distributions that are non-Gaussian, yet characteri-

zable as the distribution of the argmax of a Gaussian process. To fix ideas, letting θ0 ∈ Rd denote

a parameter (vector) of interest, the estimators θ̂n in question satisfy

rn(θ̂n − θ0)⇝ argmax
s∈Rd

G(s), (1)

where n is the sample size, rn is a rate of convergence, ⇝ denotes weak convergence (as n → ∞),

and G is a Gaussian process admitting a unique maximizer (over Rd) whose distribution is non-

Gaussian. The seminal work of Kim and Pollard (1990) was concerned with (cube root asymptotic)

cases where rn = 3
√
n and the mean function of G is a quadratic form, but subsequent work (e.g.,

Hansen, 2000; Lai and Lee, 2005; Lee, Liao, Seo, and Shin, 2021; Lee and Pun, 2006; Lee and Yang,

2020; Westling and Carone, 2020; Yu and Fan, 2021) has documented the relevance of allowing for

the extra flexibility afforded by the more general formulation in (1).

Letting µ and C denote the mean function and covariance kernel of G and defining

Fŝ(t) = P[ŝ ≤ t], ŝ = argmax
s∈Rd

G(s), (2)

our goal in this paper is to give conditions on µ and C that imply continuity of Fŝ. Continuity of

Fŝ is useful when the goal is to use θ̂n to construct confidence regions. For instance, van der Vaart

(1998, Lemma 23.3) assumes continuity when establishing validity of bootstrap-based confidence

intervals; see also Politis, Romano, and Wolf (1999, Section 1.2). Moreover, and relatedly, it

follows from Polya’s theorem that if (1) holds and if Fŝ is continuous, then the the probability laws

of rn(θ̂n − θ0) converge to the law with distribution function Fŝ not only in the bounded Lipschitz

metric (or any other metric metrizing weak convergence), but also in the Kolmogorov metric; that

is, we have a result of the form

sup
t∈Rd

∣∣∣P[rn(θ̂n − θ0) ≤ t
]
− Fŝ(t)

∣∣∣ → 0. (3)

When µ is a quadratic form and C is a bilinear form, the distribution of ŝ is Gaussian. More

generally, under mild conditions on µ the distribution of ŝ is that of a transformation of a Gaussian

vector when C is a bilinear form, implying in particular that the properties of Fŝ can be deduced by

means of a change of variables argument. Two other special cases where a complete characterization

of Fŝ is available are when d = 1, C is the covariance kernel of a two-sided Brownian motion, and

µ is proportional to either the absolute value function or the square function. In both cases, the

distribution of ŝ is that of a scalar multiple of a random variable with a well-known continuous

distribution. Somewhat more generally, Cattaneo, Jansson, and Nagasawa (2024, Lemma A.2)

gave conditions on µ under which Fŝ is continuous when d = 1 and C is the covariance kernel of

a two-sided Brownian motion. On the other hand, little (if anything) appears to be known about
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the properties of Fŝ when d > 1 and C is not bilinear.

In this paper we close this gap by presenting sufficient conditions for continuity of Fŝ that

do not require d = 1 and are applicable (only) when C is not bilinear. Proceeding under the

assumption that d = 1, the proof of Cattaneo et al. (2024, Lemma A.2) establishes continuity

of Fŝ by showing that the distribution of ŝ is atomless (under the additional assumptions of the

lemma). The method of proof can be adapted to give conditions under which the distribution of ŝ

is atomless also when d > 1, but when d > 1 a distribution can be atomless even if the associated

distribution function is discontinuous. Establishing continuity of Fŝ when d > 1 therefore requires

a fundamentally different method of proof than that employed by Cattaneo et al. (2024, Lemma

A.2). The differences in proof strategies are reflected also in the assumptions under which the

proofs proceed. Notably, one of the conditions imposed in this paper explicitly involves both µ and

C and requires that for every N ∈ N, restriction of G to [−N,N ]d has a mean function that belongs

to the reproducing kernel Hilbert space (RKHS) of its covariance kernel. By the Cameron-Martin

theorem, if a Gaussian process has a mean belonging to the RKHS of its covariance kernel, then

its induced probability measure and the probability measure induced by its centered version are

mutually absolutely continuous. The proof of our main result uses this fact and an assumed shift

equivariance property of the covariance kernel to deduce continuity of Fŝ.

The usefulness of our main result is illustrated by applying it to three examples: maximum

score estimation, empirical risk minimization, and threshold regression estimation. Each example

involves an estimator satisfying (1) with d possibly greater than one and a covariance kernel that

is not bilinear. Although distinct in several ways, the examples enjoy the common feature that

continuity of Fŝ can be shown by verifying the conditions of our main result. In particular, the

condition that the mean function belongs to the RKHS of the covariance kernel can be verified by

following a general strategy outlined in Lifshits (1995). In words, the strategy is to characterize

the RKHS as the range of an integral operator applied to a carefully chosen L2 space. To show

that the mean function µ belongs to the RKHS, one simply finds an element of the L2 space that

maps to µ; for details, see Section 4.3.1.

In addition to facilitating the justification of certain large-sample inference procedures based

on distributional approximations of the form (1), our paper sheds new light on the canonical

problem of characterizing the distributional properties of the argmax of a Gaussian process. That

problem is substantially different from the well-studied problem of understanding the distributional

properties of the maximum itself, where the d = 1 case is mostly settled (e.g., Lifshits, 1995, and

references therein), the multidimensional case is fairly well understood (e.g., Azäıs and Wschebor,

2005, and references therein), and where, more generally, continuity of the distribution function of

the maximum can be established with the help of anti-concentration results (e.g., Chernozhukov,

Chetverikov, and Kato, 2015). However, as noted by Samorodnitsky and Shen (2013, p. 3494),

“very little is known about the random location of the supremum” of a Gaussian process. In

the multidimensional case, we are only aware of Azäıs and Chassan (2020), which shows that the

distribution admits a density under the assumption that the sample paths are twice differentiable.
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The latter assumption is violated in our motivating examples, all of which involve processes whose

sample paths are (Hölder) continuous but nowhere differentiable.

The remainder of the paper proceeds as follows. Section 2 introduces our three examples. Our

main result is presented in Section 3, while Section 4 outlines a general strategy for verifying the

conditions of the main result and demonstrates how to apply it in the examples. Finally, Section

5 compares our results with the known results alluded to in the third paragraph of this section.

2 Motivating Examples

The class of estimators satisfying (1) is broad, encompassing numerous applications in econometrics,

statistics, and data science. To motivate our theoretical contribution, this section details three

representative examples. We will demonstrate how our results can be used to establish sufficient

conditions guaranteeing the continuity of (2), thereby ensuring validity of both existing and future

inference procedures relying on that continuity property.

2.1 Maximum Score

Suppose {(yi, wi,x
′
i)
′}ni=1 is a random sample from the distribution of a vector (y, w,x′)′ generated

by the semiparametric binary response model

y = 1{w + x′θ0 ≥ u}, Median(u|w,x) = 0,

where 1{·} is the indicator function, w, u ∈ R and x ∈ Rd are random variables, and θ0 ∈ Θ ⊆ Rd

is the parameter of interest. Manski (1975) introduced the maximum score estimator of θ0, which

is any maximizer θ̂n of
n∑

i=1

(2yi − 1)1{wi + x′
iθ ≥ 0}

with respect to θ ∈ Θ. Using the methods of Kim and Pollard (1990), Abrevaya and Huang (2005)

gave regularity conditions under which (1) holds with rn = 3
√
n and G being a Gaussian process

whose mean function and covariance kernel take the form

µ(s) = −s′E
[
fu|w,x(0| − x′θ0,x)fw|x(−x′θ0|x)xx′] s

and

C(s, t) = E
[
fw|x(−x′θ0|x)CBM(x′s,x′t)

]
,

respectively, where fu|w,x and fw|x denote conditional (Lebesgue) densities, and where CBM is the

covariance kernel of a two-sided standard Brownian motion; that is,

CBM(s, t) = min{|s|, |t|}1{sgn(s) = sgn(t)},
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with sgn(·) denoting the sign function.

When d = 1, because µ is quadratic and C is a scalar multiple of CBM, it follows from van der Vaart

and Wellner (2023, Exercise 3.2.5) that the distribution of ŝ is that of a scalar multiple of a random

variable with a well-known continuous distribution, namely the Chernoff (1964) distribution. For

d > 1, on the other hand, it would appear to be an open question whether Fŝ is continuous. We

provide an affirmative answer to that question below, hereby buttressing a variety of inference

procedures based on the maximum score estimator.

For specificity, consider the procedure of Cattaneo, Jansson, and Nagasawa (2020). That paper

proposed a bootstrap-based estimator θ̃∗
n and gave conditions under which this estimator satisfies

rn(θ̃
∗
n − θ̂n)⇝P argmax

s∈Rd

G(s),

where ⇝P denotes weak convergence in probability. Because Fŝ is continuous, the displayed result

can be combined with (1) to yield a bootstrap consistency result of the form

sup
t∈Rd

∣∣∣P∗
n

[
θ̃∗
n − θ̂n ≤ t

]
− P

[
θ̂n − θ0 ≤ t

]∣∣∣ →P 0,

where P∗
n is the bootstrap probability measure. As a consequence, for any λ ∈ Rd, defining

q∗λ,n(t) = inf
{
q ∈ R : P∗

n[λ
′θ̃∗

n − λ′θ̂n ≤ q] ≥ t
}
, t ∈ (0, 1),

van der Vaart (1998, Lemma 23.3) shows that the equal-tailed “percentile” interval

CI∗λ,n(1− α) =
[
λ′θ̂n − q∗λ,n(1− α/2) , λ′θ̂n − q∗λ,n(α/2)

]
is a confidence interval (for λ′θ0) of asymptotic level 1− α:

lim
n→∞

P
[
λ′θ0 ∈ CI∗λ,n(1− α)

]
= 1− α.

With minor modifications, analogous conclusions apply to inference procedures based on the dis-

tributional approximations proposed by Delgado, Rodriguez-Poo, and Wolf (2001), Hong and Li

(2020), Jun, Pinkse, and Wan (2015), and Patra, Seijo, and Sen (2018). The theory developed in

this paper can therefore be used to establish asymptotic validity of those inference methods.

Alternative approaches to inference in semiparametric binary response models include those of

Horowitz (1992) and Rosen and Ura (2025). Because the smoothed maximum score estimator of

Horowitz (1992) is asymptotically normal, albeit under stronger assumptions than those required

for the maximum score estimator to satisfy (1), the distribution function Fŝ is continuous, and

standard Wald-type inference procedures are valid. By contrast, the inference procedure proposed

by Rosen and Ura (2025) is finite-sample valid and therefore does not rely on continuity of Fŝ,

while generally yielding partial rather than point identification.
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2.2 Empirical Risk Minimization

Mohammadi and van de Geer (2005) considered the classification problem of estimating the mini-

mizer θ0 ∈ Θ ⊆ Rd of the classification error P[y ̸= hθ(x)] with respect to θ ∈ Θ, where y ∈ {−1, 1}
is a binary outcome, x ∈ X ⊆ R is a scalar feature, and {hθ : θ ∈ Θ} is a collection of classifiers.

Given a random sample {(yi, xi)}ni=1 from the distribution of (y, x), an empirical risk minimizer is

a minimizer θ̂n of
n∑

i=1

1{yi ̸= hθ(xi)}.

Setting X = [0, 1] and specializing to the case where the classifiers are of the form

hθ(x) =

d+1∑
ℓ=1

(−1)ℓ1{θℓ−1 ≤ x < θℓ}

for θ = (θ1, . . . , θd)
′ ∈ Θ = {θ ∈ [0, 1]d : 0 = θ0 ≤ θ1 ≤ · · · ≤ θd ≤ θd+1 = 1}, Mohammadi and

van de Geer (2005, Theorem 1) gave conditions under which (1) holds with rn = 3
√
n and G being

a Gaussian process whose mean function and covariance kernel take the form

µ(s) =
d∑

ℓ=1

µℓ(sℓ), µℓ(sℓ) = (−1)ℓp(θ0,ℓ)f(θ0,ℓ)s
2
ℓ , (4)

and

C(s, t) =
d∑

ℓ=1

Cℓ(sℓ, tℓ), Cℓ(sℓ, tℓ) = f(θ0,ℓ)CBM(sℓ, tℓ), (5)

respectively, where θ0 = (θ0,1, . . . , θ0,d)
′, s = (s1, . . . , sd)

′, t = (t1, . . . , td)
′, f is a Lebesgue density

of x, p(x) = dP[y = 1|x]/dx, and where the assumptions imposed on the model ensure that

(−1)ℓp(θ0,ℓ)f(θ0,ℓ) < 0 for every ℓ = 1, . . . , d.

This example is similar to the maximum score example insofar as when d = 1, the distribution

of ŝ is that of a scalar multiple of a random variable with a Chernoff distribution. In fact, also when

d > 1, the elements of ŝ = (ŝ1, . . . , ŝd)
′ are mutually independent, each having a distribution which is

that of a scalar multiple of a random variable with a Chernoff distribution. Indeed, letting G1, . . . ,Gd

be mutually independent Gaussian processes with mean functions µ1, . . . , µd and covariance kernels

C1, . . . , Cd, respectively, G admits the representation G(s) =
∑d

ℓ=1 Gℓ(sℓ), implying in particular that

ŝℓ = argmax
sℓ∈R

Gℓ(sℓ) for each ℓ ∈ {1, . . . , d}.

In other words, this example has special structure that can be used to obtain a definitive

characterization of the distribution of ŝ without utilizing new tools. It is nevertheless of interest

to explore the ease with which the technology developed in this paper can be deployed to establish

continuity of Fŝ in this example. In particular, it is of interest to explore whether the (effective)

“dimension reduction” permitted by this example can be leveraged when verifying the conditions
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of Theorem 1 below.

2.3 Threshold Regression

Consider the threshold regression model

y = x′β0 + x′δn1{q > w′θ0}+ u, E(u|x, q,w) = 0,

where y ∈ R is a dependent variable, x ∈ Rk is a (possibly) vector-valued regressor, q is a threshold

variable, w ∈ Rd is a (possibly) vector-valued factor governing the threshold cutoff, and where,

borrowing ideas from the change-point literature (e.g., Bai, 1997), δn is a “threshold effect” whose

magnitude vanishes with n. The present model (as well as distinct generalizations thereof) has

been studied by Lee, Liao, Seo, and Shin (2021) and Yu and Fan (2021), and differs from the model

considered in Hansen (2000) by allowing the factor w to be non-constant.

Given a random sample {(yi,x′
i, qi,w

′
i)
′}ni=1 from the distribution of (y,x′, q,w′)′, a least squares

estimator (β̂′
n, δ̂

′
n, θ̂

′
n)

′ of (β′
0, δ

′
n,θ

′
0)

′ is a minimizer of

n∑
i=1

(
yi − x′

iβ − x′
iδ1{qi > w′

iθ}
)2

over (β′, δ′,θ′)′ ∈ R2k+d. Assuming ∥δn∥ → 0, n∥δn∥2 → ∞, and δ̄n = δn/∥δn∥ → δ̄ (for some

δ̄ ∈ Sd−1 = {δ̄ ∈ Rd : ∥δ̄∥ = 1}), Yu and Fan (2021) gave conditions under which (1) holds with

rn = n∥δn∥2 and G = G(·; δ̄) being a Gaussian process whose mean function and covariance kernel

take the form

µ(s) = µ(s; δ̄) = −1

2
δ̄′E

[
|w′s|fq|w(w′θ0|w)E·|q,w[xx

′|w′θ0,w]
]
δ̄

and

C(s, t) = C(s, t; δ̄) = δ̄′E
[
fq|w(w

′θ0|w)E·|q,w[xx
′u2|w′θ0,w]CBM(w′s,w′t)

]
δ̄,

respectively, where E·|q,w denotes conditional expectation.

When d = 1, the distribution of ŝ is that of a scalar multiple of a random variable with a

(known) continuous distribution (e.g., Section 3.2 of Hansen, 2000). For d > 1, on the other hand,

it would appear to be an open question whether Fŝ is continuous. We provide an affirmative answer

to that question below.

Remark. As a by-product, continuity of the limiting distribution function can be used to show

that if ∥δn∥ → 0 and if n∥δn∥2 → ∞, then (whether or not δ̄n is convergent in Sd−1) we have

sup
t∈Rd

∣∣∣∣∣P [
rn(θ̂n − θ0) ≤ t

]
− P

[
argmax

s∈Rd

G(s; δ̄n) ≤ t

]∣∣∣∣∣ → 0.
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3 Main Result

As before, let G be a Gaussian process on Rd with mean function µ and covariance kernel C. Also,
for any N ∈ N, let GN be the restriction of G to [−N,N ]d, let µN and CN be the mean function

and covariance kernel of GN , and let HN be the RKHS of CN (as defined in Section 2.6.1 of Giné

and Nickl, 2016).

The following high-level assumption holds in each of the examples of Section 2.

Assumption 1.

(i) With probability one, G has continuous sample paths and admits a maximizer over Rd.

(ii) For any s, t ∈ Rd and any h ∈ Rd\{0}, C(h,h) > 0 and

C(h+ s,h+ t)− C(h+ s,h)− C(h,h+ t) + C(h,h) = C(s, t).

(iii) For any N ∈ N, µN ∈ HN .

Part (i) guarantees existence (with probability one) of a maximizer of G over Rd, and over any

compact set S ⊂ Rd. By Kim and Pollard (1990, Lemma 2.6), these maximizers are unique provided

V[G(s) − G(t)] ̸= 0 for every s ̸= t. Part (ii) gives sufficient conditions for this non-degeneracy

condition to hold and furthermore implies that the centered process Gµ = G −µ is shift equivariant

in the sense that the law of the process Gµ(h + ·) − Gµ(h) is the same for every h ∈ Rd. An

immediate implication of shift equivariance is that V[G(0)] = 0. A slightly more subtle implication

is recorded in the following lemma.

Lemma 1. Suppose G has continuous sample paths and suppose Assumption 1(ii) holds. For any

h ∈ Rd, any measurable set T ⊆ Rd, and any compact set S ⊂ Rd,

P
[
argmax

s∈S
Gµ(s) ∈ T

]
= P

[
argmax
s∈S+h

Gµ(s) ∈ T + h

]
.

Proof of Lemma 1. By change of variables and shifting by a constant,

argmax
s∈S+h

Gµ(s) = argmax
s∈S

Gµ(h+ s) + h = argmax
s∈S

{Gµ(h+ s)− Gµ(h)}+ h.

The desired conclusion follows from shift equivariance of Gµ. □

By the Cameron-Martin theorem (e.g., Theorem 2.6.13 of Giné and Nickl, 2016), part (iii) of

Assumption 1 ensures that the probability measures associated with GN and Gµ
N = GN − µN are

mutually absolutely continuous for any N ∈ N. Along with Lemma 1, that property plays a key

role in our proof of the following result.

Theorem 1. Under Assumption 1, Fŝ in (2) is continuous.
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Proof of Theorem 1. For any compact set S ⊂ Rd, parts (i) and (ii) of Assumption 1 guarantee

existence (with probability one) of a unique maximizer of Gµ over S, uniqueness being a consequence

of Kim and Pollard (1990, Lemma 2.6). This observation will be used repeatedly without further

mention. The (joint) distribution function of ŝ = (ŝ1, . . . , ŝd)
′ is continuous if and only if each of

its marginal distribution functions is continuous. Fixing ℓ ∈ {1, . . . , d} and t ∈ R, the proof can

therefore be completed by showing that

P [ŝℓ = t] = 0. (6)

Defining Nt = ⌈|t|⌉+ 1, letting eℓ denote the ℓth standard basis vector of Rd, and noting that

{ŝℓ = t} =

{
e′ℓ argmax

s∈Rd

G(s) = t

}
⊆

∞⋃
N=Nt

{
e′ℓ argmax

s∈[−N,N ]d
G(s) = t

}
,

a sufficient condition for (6) to hold is that

P

[
e′ℓ argmax

s∈[−N,N ]d
G(s) = t

]
= 0 for every N ≥ Nt.

By the Cameron-Martin theorem, under Assumption 1(iii) the displayed condition is equivalent to

P

[
e′ℓ argmax

s∈[−N,N ]d
Gµ(s) = t

]
= 0 for every N ≥ Nt. (7)

Fixing N ≥ Nt and J ≥ 2, let

Sj =

{
(s1, . . . , sd) ∈ [−N,N ]d : −Nt +

1

2

j − 1

J − 1
≤ sℓ ≤ Nt +

1

2

(
j − 1

J − 1
− 1

)}
for j ∈ {1, . . . , J}. Noting that

[−N,N ]d ⊇ S̄ = {(s1, . . . , sd) ∈ [−N,N ]d : −Nt ≤ sℓ ≤ Nt} = ∪J
j=1Sj

⊃ ∩J
j=1Sj = {(s1, . . . , sd) ∈ [−N,N ]d : −Nt + 1/2 ≤ sℓ ≤ Nt − 1/2} = S,

we have

P

[
e′ℓ argmax

s∈[−N,N ]d
Gµ(s) = t

]
≤ P

[
e′ℓ argmax

s∈S̄
Gµ(s) = t

]
≤ P

[
e′ℓ argmax

s∈S1

Gµ(s) = t

]

=
1

J

J∑
j=1

P

[
e′ℓ argmax

s∈Sj

Gµ(s) = t+
1

2

j − 1

J − 1

]

≤ 1

J

J∑
j=1

P

[
e′ℓ argmax

s∈S
Gµ(s) = t+

1

2

j − 1

J − 1

]
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=
1

J
P

[
e′ℓ argmax

s∈S
Gµ(s) ∈

{
t+

1

2

j − 1

J − 1
: 1 ≤ j ≤ J

}]
≤ 1

J
,

where the first equality uses Lemma 1 and the second equality uses uniqueness of the maximizer of

Gµ over S. Since J ≥ 2 was arbitrary, (7) follows. □

4 Verification of Assumption 1

4.1 Assumption 1(i)

The continuity part of Assumption 1(i) is mild and usually trivial to verify. Under continuity and

assuming that P[G(0) = 0] = 1, a high-level sufficient condition for existence of a maximizer of G
over Rd is that

P

[
lim sup
∥s∥→∞

G(s) < 0

]
= 1. (8)

In turn, proceeding as in the proof of Kim and Pollard (1990, Lemma 2.5) it can be shown that if

the covariance kernel satisfies the (self-similarity) property that for some H > 0,

C(τs, τt) = τ2HC(s, t) for every s, t ∈ Rd, τ > 0, (9)

then (8) is implied by the following mild condition on the mean function:

lim sup
∥s∥→∞

µ(s)

∥s∥H+ϵ
< 0 for some ϵ > 0. (10)

The assumption P[G(0) = 0] = 1 holds if (and only if) µ(0) = 0 = C(0,0) and is therefore satisfied

in each of the examples of Section 2. Likewise, the conditions (9) and (10) are both fairly primitive.

Also, by inspection, (9) can be seen to hold with H = 1/2 in each of the examples of Section 2.

Moreover, setting H = 1/2, (10) can be seen to hold with ϵ = 3/2 in the maximum score and

empirical risk minimization examples, and with ϵ = 1/2 in the threshold regression example.

To explain why it is no coincidence that the self-similarity property of C holds in the examples

of Section 2, it may be helpful to note that in each case G is the weak limit of a process of the form

s 7→
√

rn
n

n∑
i=1

[mn(zi,θ0 + r−1
n s)−mn(zi,θ0)],

where {zi}ni=1 is a random sample and mn is some function (possibly depending on n). For instance,

in the threshold regression example we have

mn(z,θ) = − 1

2∥δn∥
(
y − x′β0 − x′δn1{q > w′θ}

)2
, z = (y,x′, q,w′)′.
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It therefore stands to reason that C can be characterized as follows:

C(s, t) = lim
n→∞

rnE[{mn(z,θ0 + r−1
n s)−mn(z,θ0)}{mn(z,θ0 + r−1

n t)−mn(z,θ0)}].

To further conclude that (9) holds with H = 1/2, it suffices to assume that the preceding display

admits the following strengthening: for any ηn > 0 with ηn = O(r−1
n ),

C(s, t) = lim
n→∞

E[{mn(z,θ0 + ηns)−mn(z,θ0)}{mn(z,θ0 + ηnt)−mn(z,θ0)}]
ηn

. (11)

A characterization of the form (11) is valid in each of the examples of Section 2.

4.2 Assumption 1(ii)

By inspection, the displayed part of Assumption 1(ii) holds in each of the examples of Section 2.

To explain why this is no coincidence, observe that upon defining θn = θ0 + ηnh we have

E[{mn(z,θ0 + ηn[h+ s])−mn(z,θ0)}{mn(z,θ0 + ηn[h+ t])−mn(z,θ0)}]

− E[{mn(z,θ0 + ηn[h+ s])−mn(z,θ0)}{mn(z,θ0 + ηnh)−mn(z,θ0)}]

− E[{mn(z,θ0 + ηnh)−mn(z,θ0)}{mn(z,θ0 + ηn[h+ t])−mn(z,θ0)}]

+ E[{mn(z,θ0 + ηnh)−mn(z,θ0)}{mn(z,θ0 + ηnh)−mn(z,θ0)}]

= E[{mn(z,θn + ηns)−mn(z,θn)}{mn(z,θn + ηnt)−mn(z,θn)}] for any s, t,h ∈ Rd.

The displayed part of Assumption 1(ii) is therefore valid whenever the following “local uniform”

version of (11) is valid: for any ηn > 0 with ηn = O(r−1
n ) and any θn = θ0 +O(ηn),

C(s, t) = lim
n→∞

E[{mn(z,θn + ηns)−mn(z,θn)}{mn(z,θn + ηnt)−mn(z,θn)}]
ηn

. (12)

In turn, a characterization of the form (12) is valid in each of the examples of Section 2.

4.3 Assumption 1(iii)

Evaluating Assumption 1(iii) is usually straightforward when HN is known. More generally, a

viable strategy for verifying Assumption 1(iii) can be based on Lifshits (1995, Chapters 6 and 9).

This subsection first outlines that strategy, and then demonstrates its usefulness by employing it

in each of the examples in Section 2.

4.3.1 General Strategy

For N ∈ N, suppose EN = {eN (·; s) : s ∈ [−N,N ]d} is a model of the covariance kernel CN (in

the terminology of Chapter 6 of Lifshits, 1995); that is, suppose that for some measure space

10



(ΩN ,BN , νN ), EN is a collection of elements of L2(ΩN ,BN , νN ) satisfying

CN (s, t) =

∫
eN (ω; s)eN (ω; t)dνN (ω) for all s, t ∈ [−N,N ]d. (13)

Then, as discussed in Lifshits (1995, Chapter 9), the mean function µN belongs to HN if (and only

if) it admits a function lN ∈ L2(ΩN ,BN , νN ) satisfying

µN (s) =

∫
eN (ω; s)lN (ω)dνN (ω) for all s ∈ [−N,N ]d. (14)

Lifshits (1995) demonstrates how this strategy can be used to characterize HN for several examples

of Gaussian processes. There is no general blueprint for defining EN and lN satisfying (13)-(14).

We modify the arguments used in Lifshits (1995) to cover our examples.

4.3.2 Example: Maximum Score (Continued)

For N ∈ N, let BN be the Borel σ-algebra on ΩN = R1+d and let νN = λ × Px, where λ is the

Lebesgue measure on R and Px is the probability measure induced by x. A direct calculation shows

that (13)-(14) hold with ω = (ω1,x
′)′,

eN (ω; s) =
[
1{0 ≤ ω1 ≤ x′s}+ 1{x′s ≤ ω1 < 0}

]√
fw|x(−x′θ0|x),

and

lN (ω) = −21{|ω1| ≤ N
√
d∥x∥}|ω1|fu|w,x(0| − x′θ0,x)

√
fw|x(−x′θ0|x).

4.3.3 Example: Empirical Risk Minimization (Continued)

For N ∈ N, let BN be the Borel σ-algebra on ΩN = Rd and let νN be the Lebesgue measure on

Rd. Then (13)-(14) hold with ω = (ω1, . . . , ωd)
′,

eN (ω; s) =
√
24NuN (ω)

d∑
ℓ=1

(
ωℓ −

3
√
sℓ
2

)
[1{0 ≤ ωℓ ≤ 3

√
sℓ}+ 1{ 3

√
sℓ ≤ ωℓ < 0}]

√
f(θ0,ℓ)

and

lN (ω) =

√
75NuN (ω)

2

d∑
ℓ=1

ω3
ℓ |ωℓ|(−1)ℓp(θ0,ℓ)

√
f(θ0,ℓ),

where uN is a Lebesgue density of the uniform distribution on [−N,N ]d.

The strategy described in Section 4.3.1 and followed in the previous paragraph is general and

is not designed to leverage the special structure highlighted in Section 2.2. Because it stands to

reason that the additive separability of CN induces an analogous simplification of the associated

HN , it seems natural to ask whether such a “tensorization” (is materialized and) can in turn be

exploited when verifying Assumption 1(iii).

11



The special structure (5) of CN implies that HN consists of those functions that are of the form

hN (s) =
∑d

ℓ=1 hℓ,N (sℓ), with hℓ,N belonging to the RKHS of Cℓ,N for each ℓ. Now, proceeding as in

Giné and Nickl (2016, Example 2.6.7) it can be shown that the RKHSs of C1,N , . . . , Cd,N all (coincide

and) consist of those functions on [−N,N ] that are zero-preserving and absolutely continuous with

a square integrable (weak) derivative. In particular, µN ∈ HN when µ is given by (4).

4.3.4 Example: Threshold Regression (Continued)

For N ∈ N, let BN be the Borel σ-algebra on ΩN = R1+d and let νN = λ × Pw, where λ is the

Lebesgue measure on R and Pw is the probability measure induced by w. Then (13)-(14) hold with

ω = (ω1,w
′)′,

eN (ω; s) =
[
1{w′s ≤ ω1 < 0}+ 1{0 ≤ ω1 ≤ w′s}

]√
E·|q,w[(δ̄′xu)2|w′θ0,w]fq|w(w′θ0|w)

and

lN (ω) = −1

2
1{|ω1| ≤ N

√
d∥w∥}E·|q,w[(δ̄

′x)2|w′θ0,w]

√
fq|w(w′θ0|w)

E·|q,w[(δ̄′xu)2|w′θ0,w]
.

5 Discussion of Assumption 1(iii)

Interpreted as a condition on the mean function µ, the strength of Assumption 1 (iii) is inversely

related to the richness of the RKHSs HN generated by the covariance kernel C. It seems natural

to ask, therefore, whether certain covariance kernels are so simple that Theorem 1 is silent about

the continuity properties of Fŝ for many (possibly most) interesting mean functions. Revisiting a

particularly simple covariance kernel, Section 5.1 provides an affirmative answer to that question.

A related, but arguably more interesting, question is whether Assumption 1 (iii) is likely to

be “close” to minimal in cases where the covariance kernel generates RKHSs that are sufficiently

rich to contain many (possibly most) interesting mean functions. Revisiting another well-known

covariance kernel, Section 5.2 provides evidence suggesting that the answer to that question will

be affirmative in certain special cases.

5.1 Bilinear Covariance Kernel

Suppose C(s, t) = s′Σt for some (symmetric and) positive definite Σ; that is, suppose C is a bilinear

form. Then Gµ(s) = s′Ġµ, where Ġµ = (Gµ(e1), . . . ,Gµ(ed))
′ ∼ N (0,Σ). If also µ is a quadratic

form µ(s) = −s′Γs/2 (for some symmetric and positive definite Γ), then

ŝ = argmax
s∈Rd

{
−1

2
s′Γs+ s′Ġµ

}
= Γ−1Ġµ ∼ N (0,Γ−1ΣΓ−1).

Thus, this case covers asymptotically normal estimators by writing the normal random limit as the

argmax of a Gaussian process. More generally, under regularity conditions including invertibility
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of the gradient µ̇ of µ, we have ŝ = µ̇−1(−Ġµ), implying in turn that the distributional properties

of ŝ can be deduced with the help of standard tools.

In other words, if C is bilinear, then conditions for continuity of Fŝ can be formulated without

invoking the results of this paper. In fact, it turns out that Theorem 1 is completely silent about the

case where C is bilinear because in that case µ satisfies Assumption 1(iii) if and only if it is a linear

form µ(s) = s′µ̇ (for some µ̇ ∈ Rd) , in which case Assumption 1(i) fails because G(s) = s′(µ̇+ Ġµ)

does not admit a maximizer over Rd. To summarize, our results complement existing techniques,

Assumption 1(iii) being very restrictive precisely when the covariance kernel of G is so simple that

no new methods are needed in order to analyze the distribution of ŝ.

5.2 Two-Sided Brownian Motion

Our motivating examples have the common feature that if d = 1, then C is proportional to CBM.
More generally, the examples have the feature that for any d, C is a (linear) functional of CBM, a
feature which in turn would appear to be shared by most other examples of estimators satisfying

(1) with a covariance kernel that is not bilinear. It is therefore of interest to further investigate the

continuity properties of Fŝ in the special case where Gµ is a two-sided Brownian motion.

Accordingly, suppose d = 1 and suppose C = σ2CBM for some σ2 > 0. Also in this case

Assumption 1(iii) reduces to a primitive condition on µ. Indeed, proceeding as in Giné and Nickl

(2016, Example 2.6.7) it can be shown that Assumption 1(iii) holds if and only if µ is zero-preserving

and absolutely continuous with a locally square integrable (weak) derivative.

In the leading special case where

µ(s) = −c|s|γ for some c, γ > 0, (15)

Theorem 1 therefore implies that Fŝ is continuous whenever γ > 1/2. The same condition on γ

is necessary and sufficient in order to deduce continuity of Fŝ by applying Cattaneo et al. (2024,

Lemma A.2), which replaces Assumption 1(iii) with the Brownian motion-specific assumption

lim
η↓0

µ(s+ η)− µ(s)
√
η

= 0 for every s ∈ R. (16)

Maintaining the assumption that Gµ is a two-sided Brownian motion, but looking beyond mean

functions of the form (15), the assumption (16) is slightly more general than Assumption 1(iii). To

see this, notice on the one hand that if µ is absolutely continuous with (weak) derivative µ̇, then

∣∣∣∣µ(s+ η)− µ(s)
√
η

∣∣∣∣ =
∣∣∣∣∣
∫ s+η
s µ̇(t)dt

√
η

∣∣∣∣∣ ≤
√∫ s+η

s
µ̇(t)2dt

by the Cauchy-Schwarz inequality, so (16) holds if µ̇ is locally square integrable. On the other

13



hand, the function

s 7→ −|s| sin
(

π/2

min{1, |s|}

)
satisfies (16), but is not absolutely continuous (on intervals containing zero).

In other words, in the special case of a two-sided Brownian motion, Assumption 1(iii) can be

replaced by a slightly weaker assumption, namely (16), which can accommodate departures from

absolute continuity. What is less clear, but arguably more interesting, is whether Assumption

1(iii) imposes unduly restrictive constraints on γ also when µ is of the form (15) near zero. In the

remainder of this section, we attempt to shed light on that question.

When µ is of the form (15), the condition γ > 1/2 serves dual purposes when verifying the fact

that Fŝ is continuous. On the one hand, because (9) holds with H = 1/2, the condition γ > 1/2

ensures that the tail behavior of µ is such that (10) holds. In addition, γ > 1/2 is necessary to

ensure that µ is sufficiently well behaved near zero that the weak derivative of µ is locally square

integrable. To shed more light on Assumption 1(iii), we disentangle the dual implications of γ > 1/2

in (15) by considering the mean function

µ(s) = −c|s|min{1, |s|}γ−1 for some c, γ > 0, (17)

which automatically satisfies (10), but satisfies Assumption 1(iii) only when γ > 1/2. The following

example shows that every γ < 1/2 admits a c = c(γ, σ2) > 0 such that if µ is given by (17), then Fŝ

is discontinuous, suggesting in turn that for this canonical covariance kernel at least, Assumption

1(iii) is close to minimal in Theorem 1.

Example. Fix γ ∈ (0, 1/2) and note that with probability one the sample paths of Gµ are γ-

Hölder continuous on [0, 1] (e.g., Theorem 14.5 (iii) of Kallenberg, 2021). As a consequence, there

exists a constant c = c(γ, σ2) such that

P

[
sup

s∈(0,1]
s−γGµ(s) ≥ c

]
< 1/4. (18)

Fixing any such c, let G = Gµ + µ, where µ is defined as in (17).

By (18), we have

P[ŝ ∈ (0, 1]] ≤ P

[
sup

s∈(0,1]
G(s) ≥ 0

]
= P

[
sup

s∈(0,1]
s−γGµ(s) ≥ c

]
< 1/4,

where the first inequality uses G(0) = 0. Similarly,

P[ŝ ∈ [1,∞)] ≤ P

[
sup

s∈[1,∞)
G(s) ≥ 0

]
= P

[
sup

s∈[1,∞)
s−1Gµ(s) ≥ c

]

≤ P

[
sup

s∈[1,∞)
sγ−1Gµ(s) ≥ c

]
= P

[
sup

s∈(0,1]
s1−γGµ(1/s) ≥ c

]
< 1/4,
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where the first inequality uses G(0) = 0, the second inequality uses γ ≥ 0, and the third inequality

uses (18) and the time inversion property of Brownian motion (e.g., Lemma 14.6 (i) of Kallenberg,

2021). Therefore, P[ŝ > 0] ≤ P[ŝ ∈ (0, 1]] + P[ŝ ∈ [1,∞)] < 1/2. Likewise, P [ŝ < 0] < 1/2, so

P[ŝ = 0] = 1− P[ŝ < 0]− P[ŝ > 0] > 0, implying in particular that Fŝ is discontinuous at zero. ⌟
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