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A.1 Proofs of Main Results

A.1.1 Proof of Theorem 1

As explained in the paper, Theorem 1 follows from ten technical lemmas. The remainder of this
subsection presents those lemmas and their proofs.

The first lemma can be used to show that 9n is consistent.

Lemma A.1 Suppose Condition CRA (i) holds. Then 6, — 6y = op(1) if

Mn(én) > sup Mn(e) - OIP’(l)'
60cO®

Proof of Lemma A.1. It suffices to show that every 6 > 0 admits a constant ¢s > 0 such that
P !Mn(ao) — sup M,(0) > 05] — 1. (A.1)
0c0\0)
By assumption, supgee |Mn (@) — Mo(6)| = o(1). Also, by Pollard (1989, Theorem 4.2),

;ggmn(e)—Mn(e)\:op( W) :op( \/27) — op(1).

As a consequence, for any § > 0,

M,(6) — sup M,(0) = Mo(6p) — sup My(6) + op(1),
0c@\0) 0cE\0)

so (A.1) is satisfied with c¢s = [My(6o) — SWgpco\of My(0)]/2>0. 1
Assuming the derivatives exist, let M, (0) and M, (0) denote dM,,(8¢)/06 and H>M,,(0)/0006’,

respectively. If M,, is twice continuously differentiable on a neighborhood @,, of 8y, then it follows

from Taylor’s theorem that

1 . 1.

Mo (8) ~ M (B0) + (6 — B0) Hu(6 — 80)| < Cull0 — 8ol + 5 Cull — Bol>,  (A2)

for every 0 € ®,,, where H,, = —M,,(8), C,, = ||M,(89)||, and C,, = SUPgco, || M,(68) — M, (60|
As an immediate consequence of (A.2), we have the following convergence result about Q.

Lemma A.2 Suppose Condition CRA(ii) holds. Then Q,, converges compactly to Qq; that is,
sup |Qn(s) — Qo(s)[ — 0

lIsl|<K
for any K > 0.

Proof of Lemma A.2. Let K > 0 be given and suppose n is large enough that K7, < §, where
-1
§ > 0 is as in Condition CRA(ii). Using (A.2) with @, = "™ , we have

Qn(s) — Qo(s)| = |r2[Mn(B0 + srit) — M(60)] + %HO

1 . 1 ..
< 3 }s’(Hn — Ho)s} + r,Chlls|| + §CnHSH2 = (K + K2)0(1)

1



uniformly in s with [|s|| < K, where the last equality uses 7,C,, = 7,||M,(0)|| — 0 along with the

facts that
; ; 52

H, — Hy = —[M,(6g) — My(6y)] — 0, My(6p) = WMO(O),
and
Co = sup ||My(6) — My(60)]]
ocef™
< 2 sup 101,(8) — Mo(8)[| +  sup ) |1M0(8) — Mo(8o)|| — 0. 1
ocol ™ ocef™

The next lemma can be used to obtain the rate of convergence of 0.,

Lemma A.3 Suppose Conditions CRA (ii)-(iii) hold. Then r,(8, —8¢) = Op(1) if 6,,— 0y = op(1)
and if

M, (6,) > sup M,(8) — op(r;,2).
0cO

Proof of Lemma A.3. For any § > 0 and any K € N, P[r,||8,, — 6g|| > 25] is no greater than

P[sup M, (0) — M, (8,) > 6r; %] +P[||6, — 8o]| > §/2]

0cO®
+ >, P sup  N,(6) — Ma(80) > —5r7,
K2 <or, L2 T1<rall0—60]|<2/

By assumption, the probabilities on the first line go to zero for any § > 0. As a consequence, it
suffices to show that the sum on the last line can be made arbitrarily small (for large n) by making
0 > 0 small and K large.
To do so, let § > 0 be small enough so that Conditions CRA(ii)-(iii) are satisfied and
1 3
¢(6) = lim inf — Apin (H,) — C°] > 0,
n—oo 16
where €9 = SUPgc@; || M,,(8) — M,(80)|| and where Amin(-) denotes the minimal eigenvalue of the
argument. Then, for all n large enough and for any pair (j, K)’ € N2 with j > K, we have
M, (6p) — sup M,,(0) — 67,2 > 2% ¢, 1 (0)r,, 2,
2-1<7,||60—B||<27
where ¢, k(6) = [Amin(Hy) — Cg]/S — 27Ky C,, — 272K 5 and where the inequality uses the following
implication of (A.2): If Apin(H,) — C? > 0 and if @/, is a subset of ©,,, then

1 .. .
M, (80) — sup M, (8) > =[Amin(H,) — C°] inf [|8 — 8||> — C,, sup ||@ — 6g]|.
0c@/, 2 0c@;, 0c@/,



Choosing n and K large enough, we may assume that ¢, k() > ¢(d), in which case

Z P sup Mn(a) - Mn(eg) > _5%2]
J>K2i<6r, L2 TI<rnll0—00||<2
< ) P| sw {M,(6) — M,,(89) — M (6) + M, (60)} > 2%,%]((5)7«;2]
J>K 2 <sr, L2 T1<rall6—6o[|<2
< ) P| sup || Mu(6) — Mn(60) — My (8) + M, (60)|| > 2% ¢(6) ,ﬂ]
J>K2i<ér, Lmll0—6oll<27
7“2 . ~ ~
= j}) Y., 27VE [ sup || M (8) — My (69) — My, (8) + Mn(90)||] :

§>K,23 <8y, n||60—00]|<29

where the last inequality uses the Markov inequality.
Under Condition CRA(iii), ¢, supp<s<s E[d® (z)2/6'] = O(1) and it follows from Pollard (1989,

Theorem 4.2) that the sum on the last line is bounded by a constant multiple of

—21/7"” '
o \/ gn sup B (2)2/5'] Y 27972,
0<6'<6 -

J>K, 21<(57‘n Jz2K

which can be made arbitrarily small by making K large.

In combination, the next two lemmas can be used to show that G, ~» Go in the topology of

uniform convergence on compacta.

Lemma A.4 Suppose Conditions CRA (iii)-(iv) hold and suppose Q,(s) = o(/n) for every s € RY.

Then G, converges to Gg in the sense of weak convergence of finite-dimensional projections.
Proof of Lemma A.4. Because Gy,(s) = n~ /237" 4, (z:;8), where
$n(2:8) = /Tudn[ma (2,00 + 57, ") — M (2,00) — My (8o +575,") + M (60)]1(60 + 57, € ©)
the result follows from the Cramér-Wold device if
By, (2;8),(2;8)] — Co(s,t)  ¥s,t € RY,

and if the following Lyapunov condition is satisfied:
1
B[, (z;8)] =0 Vs eRY
n
Let s,t € R? be given and suppose without loss of generality that 8y + sr !, 0 + tr;! € ©.
Then, using @,,(s) = o(y/n) and the representation

¥, (2;8) = \/Tntn|[mn (2,00 + s ) — my(z, 00)] — Qn(s),

1
NG



we have
B[, (2;8)1,(2; t)]
= ragBl{m (2,80 + 511) — (2. 00) Hm, (2,80 + 1) — ma (2. 00)}] ~ -Qu()Qu(t
— C()(S,t)
and, using E[d5" (z)4] = o(q;; ®ry) (for 6, = O(r;; 1)),

1 , r2q2

3
Bl 2,80+ 572) — 2801+ 5 Qu(s)! =0 (4 ) = o(1),

as was to be shown. 1

Lemma A.5 Suppose Conditions CRA(iii) and CRA(v) hold. Then {Gy(s) : ||s|| < K} is sto-
chastically equicontinuous for every K > 0; that is,
sup ’én(s) - Gn(t)| —p 0

|[s—t[|<An
[Is][t][<EK

for any K > 0 and for any A, > 0 with A, = o(1).

Proof of Lemma A.5. Let K > 0 be given. As in the proof of Kim and Pollard (1990, Lemma
4.6) and using the fact that g, 'E[d’"(z)?] = O(1) (for 6, = O(r; 1)), it suffices to show that

qn
T sup E dn(zi;8,t)* —p 0,
an t|| <A, ’
[Is]][[t]|<K

where d,,(z;s,t) = |my(z,00 + sr;l) — my (2,00 + tr;1)|/2.
For any C > 0 and any s,t € R? with ||s]|,|[t|| < K,

n

qn ¥ 2 an Kt 2 TRt

— Y dp(zi;s,t)° < — > d;"™ (z;)Wand, ™ (2

oS it € S i ) 2 O
+CE[d,(z;s,t)]

_|_C% Z{dn(zz, S, t) - E[dn(Z, S, t)]}7
=1

and therefore

n

N 1
B sup Z (z;8,t)| < qurnB [dnK’"" (2)*1(gnd5™ (z) > C)
lls—t||<An T =
lIs[l.[Itl| <K
+Cry,  sup E[d,(z;s,t)]
lls—t||<An
[Is[ll[tl| <K

+Cr,E sup |— dp(zi;8,t) — E[d,(z;s,t
o Inz{ Eldn(z;s, t)]}|
[Is]l, 6] <K

For large n, the first term on the majorant side can be made arbitrarily small by making C



large. Also, for any fixed C, the second term tends to zero because A,, — 0. Finally, Pollard (1989,
Theorem 4.2) can be used to show that for fixed C' and for large n, the last term is bounded by a

constant multiple of

oy ELE (Z)z]=fﬁnm&frnl(z)w(mgl)}=O(1)=0<1>- '

n

The analysis of 9; also relies on five lemmas, each of which is a natural bootstrap analog of a
lemma used to analyze 6,,. The following lemma can be used to show that é; is consistent in the
sense that é; —0,, = op(1).

Lemma A.6 Suppose Condition CRA(i) holds and suppose H, —p H, where H is symmetric and
positive definite. Then é; — 0, = op(1) if

M;;(8,,) > sup M;:(0) — oz(1).
0coO

Proof of Lemma A.6. It suffices to show that every 6 > 0 admits a constant ¢ > 0 such that

P |M*(0,) — sup M:(0)>ci| —1, (A.3)
0c0\6’
where ©®2 = {0 € © : ||0 — 0,)|| < §}. The process M* satisfies

VE:(0) = NE£(0) = N1, (6) = 50— 0, Fu(0 — Bu),  VE(0) = -3 (a7, 0),

where it follows from Pollard (1989, Theorem 4.2) that

suprM:w)—Mn(en—oP( W)-%( ! )—oﬂ»m.

6coO

As a consequence, for any § > 0,

~ A ~ ~

M*(0,)— sup M (@) == inf (6—0,)H,(0—8,)+op1),

0c©\0] ! 6c0©\6),
so (A.3) is satisfied with ¢} = 6*Apin(FI)/4 > 0. 1

Next, because

we have the following convergence result about Qn.

Lemma A.7 Suppose r, — oo, H,, —p H, and suppose 0,, —p 0y, where 0y is an interior point

of ©. Then Q,, —p Q in the topology of uniform convergence on compacta, where Q(s) = —s'Hs/2;



that is

On(s) — (—%S/HS)

sup —p0

lIsl|<K

for any K > 0.
Proof of Lemma A.7. Uniformly in s with ||s|| < K, we have

1
< —
-2

On(s) — (—%S/HS) S/(FL, — Hs| + % |S'Hs| 10, + 57 ¢ ©) < K20p(1),

where the last inequality uses H,, —p H and P(,, +sr;' ¢ ©) — 0. 1
The next lemma can be used to obtain the rate of convergence of é;

Lemma A.8 Suppose Condition CRA(iii) holds and suppose H, —p H, where H is symmetric

~ % -

and positive definite. Then 1,(0, — 8,,) = Op(1) if (8, — 69) = Op(1), 8, — 0,, = op(1), and if

M (8,) > sup M (0) — op(r;,2).
0cO®

Proof of Lemma A.8. For any § > 0 and any K € N, P[r,||0., — 8,|| > 25+ is no greater than
Plsup M;(6) — M;;(8,,) > 6r,°] + P{||H, — H| > 6] + P[||6;, — 8,]| > /4]
6cO
+P[rn| |0, — Oo]| > 2]

+ Z P ) sup i M (6) — M*(8,) > —or;>
J>K2H1<6r, (2771 <rn||0—0n][<27 10|00 —60||<2K | H, —HJ|<6
By assumption, the probabilities on the first line go to zero for any § > 0 and the probability on
the second line can be made arbitrarily small by making K large. As a consequence, it suffices to
show that the sum on the last line can be made arbitrarily small (for large n) by making § > 0
small and K large.
To do so, let § > 0 be small enough so that Condition CRA(iii) holds and
= inf Apin(HA4H) > Apin(H).
2 |[E-H||<s

Then, if ||H, — H|| < §, we have

M,(6,,) — sup M, (0) — 61,2 > 225 (8)r, 2
2i—1<ry||0—0,,]|<29
for any pair (j, K)' € N? with j > K, where c}(§) = Amin(H)/16 — 272K,
Choosing K large enough that ¢}, (0) > ¢* = Amin(H)/32 and using the fact that



we therefore have

S - M;<e>—M;<én>z—5r;2]
>R <5, L2 <rnll0-0,]|<27,rn |80 —60|<2K | [H,—H]||<6
< > P s (MI3(8) — M(8y) — Ma(8) + My (8,)} > 2% c*r, ]
G>K,20+1<Gry, 129 1<ry ||0—0,|<27 7y, ||0n —00] | <2K
< X P sw 131;:(6) — 31;(B) — N1,(8) + N, (8 >\|>223cr2]
> K,29t1<6ry, L7 ||0—04||<27 7y ||0n— B0 ]| <2K
2
T . ~ A
<oy 2E[ sup |I15(8) — NI (6') - <0>+M<e'>\|]
© jrKai<sn, 7n|[6—60]| <271, ||6 =60 <2K

where the last inequality uses the Markov inequality.
Under Condition CRA(iii), g, supg<s<s E[d? (z)?/8'] = O(1) and Pollard (1989, Theorem 4.2)

can be used to show that the sum on the last line is bounded by a constant multiple of

—2J+1/7"n
r2 2¢, sup E[d? (z)2/d] ZQ 31/2,
0<5'<s

i>K, 21+1<57'n P>K

which can be made arbitrarily small by making K large.

Finally, the next two lemmas can be combined to show that @: ~p Go in the topology of

uniform convergence on compacta.

Lemma A.9 Suppose Conditions CRA (iii)-(iv) hold, 7,(8,, — 60) = Op(1), and that, for every
K >0, supyg<x |G (S) + Qu(s)| = op(\/n). Then G converges to Gy in the sense of conditional

weak convergence in probability of finite-dimensional projections.
Proof of Lemma A.9. Because G(s) = n~ /237" | {ﬂn(zf’n; s), where

U (2:8) = \/TrGn [ (2, 0 + 57,1) — (2, 0,) — My (8, + s7,) + M, (0,)]1(6,, + 51,1 € ©),
the result follows from the Cramér-Wold device if

EX [, (2" 8)0,, (2% t)] an 2i;8)0,(zi;t) —p Co(s, t) Vs, t € RY,

and if the following Lyapunov condition is satisfied:
1
~E, [, (2% s)* Z% z;;s) —p 0 Vs eRL

Let s,t € R? be given and suppose without loss of generality that 8,, + srL, 0, + trl € @.
Because (8, — 0o) = Op(1), we have
Qn(s) = 12[Mu(0, +sr;t) — Mn(0,)]1(8,, + s, " € ©)
= {Gn[rn(én —0o) +s| + Qn[rn(én —0o) +s|} — {Gn[Tn(én —6o)] + Qn[rn(én —60)]}
= op(Vn)



and, using E[d®"(2)*] = o(q;ry) (for &, = O(ril)) and Pollard (1989, Theorem 4.2),

A~

Tndn *[{mn( O 57, t) — (2", 80) Him (2, 0, + tr 1) —min(2%,0,)}] — Cals, t)

Tndn

= Z{mn (2,0, +s7,1) — (24, 9n)}{mn(zz, 0, +tr, ) — mn(2i,0,)} — Cu(s,t)

T
= op (ann TM:3> = O]P’(l)>

n

where
én(sa t) = Tngn E[{mn(zv 0+ Srgl) - mn(z, 0)}{mn(za 0+ tT'rzl) - mn(zv 0)}] }gzén
= Co(s,t) + op(1).
Using these facts and the representation
(258) = Tl (2. B+ 5r57) = m(2.0,)] = —=Qu(s)
we have
B} [, (275 8), (27 t)]
= rugnBL[{ma (2", 0, + 57, ") — ma(2*,8,) Hma (2%, 8, + tr, 1) nuxzﬂénH}—L%Qn@ﬂ@n@)
= Co(s,t) + op(1)
and, using E[d%"(z)*] = o( ) (for 6, = O(r,; ")),
1 L 2.2 N R R 1 .
167nE* [T/Jn(z S) | = 1602 ;T/’n(zﬁ 5)4 < T;;g" ; My (2, O + Srﬁl) — My (2, 9n)|4 + EQn(S)4
3
= o <n7“q+;> —op(1). W

Lemma A.10 Suppose Conditions CRA (iii) and CRA(v) hold and suppose r,(8, — 0o) = Op(1).

Then {G%(s) : ||s|| < K} is stochastically equicontinuous for every K > 0; that is,

sup |G (s) — G (t)| —p O
Is—tl|<A,
sl el <

for any K > 0 and for any A,, > 0 with A, = o(1).

Proof of Lemma A.10. Let K > 0 be given. Proceeding as in the proof of Kim and Pollard
(1990, Lemma 4.6) and using ¢,,0,, 'E[d’"(z)?] = O(1) (for &, = O(r;;')) along with the fact that

(0, — 00) = Op(1), it suffices to show that, for every finite k > 0,

N Qn
r ]l<r 0, — 0y Sk) sup E d is, t
n NH n H |s t||<A n zn
[Isl]I1t]|<K

n
< r,  sup qlzdn(Zf,n;s7t)2 —p 0,
[ls—t]|<A, T
[IsIlI[t]|<K+k



where
N 1 N N ~ N
dn(z;s,t) = §|mn(z, 0, + sr;l) —my(z,0, + tr;1)| = dn(z;7, (0, — 6g) +8,7,(0, — 0g) + t).

Let k > 0 be given. For any C > 0 and any s,t € R? with ||s]|, ||t|| < K + &,

an Zn - 2 qn 2: (K+k)ry, FK+k)yrats «

—_— R < .

n . dn(zz,na Sat) — g d ( z n) ][<qnd ( z,n) > C)
—I—CE[d (z;s,t)]

g Z{d (Zin;s, t) — Eld,(z;s,t)]}

‘|‘C Z{d zn? 7 *[dn(z*;s7t)]}’

and therefore

rnlE sup Zd Z; 58, t
[|s—t||<A,
_IISII It <K+k

IN

an FHEK+E)rp L ox 2 FHEK+E)ry L«
B — d * 4“1(qnd ~ C
B | B3 A a7 g, B (2, > )

+C’r; sup  Eld,(z;s,t)]

|ls—t||<An
lIs[l[1tl|<K+k
1 n
+Cr,E sup - dp (2 ; 8, t) — Bldy (255, t
| llstl<an HZ{ n(Zin; $,t) = Bldn )]}'
L[]l [[6]| <K+
+Cr, sup —Z{d 25 i) — B [d, (255, 0)]}
lls—t||<An
LIIsIL|[¢[[ <K+

For large n, the first term on the majorant side can be made arbitrarily small by making C
large. Also, for any fixed C, the second term tends to zero because A,, — 0. Finally, Pollard (1989,
Theorem 4.2) can be used to show that for fixed C' and for large n, each of the last two terms is

bounded by a constant multiple of

FAK+k)ry 2 x
B = R Bl g+ =0 (L) <o),

n

A.1.2 Proof of Lemma 1

Without loss of generality, suppose r,||@ — 6|| < K for some fixed constant K. Defining

§ 1 . R R .
Hy = —@[Mn(90+€nek+6nel)—Mn(90—6n6k+6nel)—Mn(90+€nek—6nel)+Mn(90—€nek¢—6nel)]

n



and

1
Hn kl(e) = _@[Mn(0+€nek+6nel)_Mn(a_enek“‘enel)_Mn(0+€nek_Enel)+Mn(0_€nek_€nel)]7

n

we obtain the decomposition
FD ND
HY5 = Hyu + R + S

where

Rnkl anl anl anl(én)‘irﬂg?kz(%)v Snkl anl(én)_ﬁg?kl(ao)‘

The proof will be completed by showing that f]g?kl —p Ho ki, Rﬂ?kl = op(1), and Sn = or(1).
First, using (A.2) and the fact that C, = o(r;;!) and C,, = o(1) under Condition CRA(ii), we

have )
€
M, (00 + enex + ener) — My (6o) = —636(816 +e)Hp(er +e) +o <rn + ei) ;
n

implying in particular that

1
0 1
nkl( 0) = nkl+0<rn6n+ >,

where, using H,, — Hy,

/ /
Hy = e Hypep — e Hoep = Ho .
Moreover, H", — HY¥, (6) is op(1) because it has mean zero and its variance is bounded by a

n-n

constant multiple of

As a consequence, H okl —P Ho ki
Next, to show that RY°,, = op(1) it suffices to show that
1 .
a sup |M,,(8) — My(60) — M(6) + My (6o)| = op(1).
n |0—60|<Kry+2en

The displayed result holds because it follows from Pollard (1989, Theorem 4.2) that

1 ~ E[ _gT;1+26n(z)2]
El= sup |M,,(0) — M, (60) — M, (0) + M, (6o)|| = O :
€n 10—00|<Kry ' +2¢, net

Finally, making repeated use of (A.2) and the fact that r,||@ — 6|| < K, we have

1
ND —
Sn,kl = op <T%€% ) = O]}P(l).

10



A.1.3 Proof of Lemma 2

Letting HTI\{DM, RfL 1> and Sn 1, be defined as in the proof of Lemma 1, we have Rn o = op(1//r3€ed)
because Pollard (1989, Theorem 4.2) can be used to show that for any K > 0 and for any A, >0
with A, = o(1),
1 N -
= sup ‘Mn(ao F€8) — My (B0 + ent) — My (g + €ns) + My (60 + ent)’

n [s—t[|<An
lIsll. el <K

1 \/Tné€n 1
= 720113 5 = Oop 33 .
€ Tn A /rngn

Also, Taylor’s theorem can be used to show that

9 . .
S = {0t 1a(80)Y (B — 00) + 06(E).
As a consequence, ﬁg?kl - I:Ig?kl =op(e2 +1/y/r3e3) + Op(1/ry), where the Op(1/r,) term

0
{80

.kl (00)} (0, — 60)

does not depend on €,.
Next, we approximate the moments of ﬁg?kl. First, using Taylor’s theorem, it can be shown
that
E[Hy) — Hoga = —€,Bnga + o(€,),

n,

where

B 82M<9>+82M<<9>} ﬂyM<w T ity u(00)] =8
nkl — — %= | 3,240 —s My —_ —— _ '
Kl 6 | 062 NIAR) 69% kI\D0 6 89% 0,k1(%0 892 0,kl\Y0 Kl

Finally, to obtain an expression for the variance of H kL let mﬁ 11(2z) denote

My (2, 00+ ey, + €n€1) — My (2, 0 + €ne — €n€)) —my (2, 0p — eney + ener) +my(z, 0g — ener, — €ney).

Because .
o = 4nle% z; (%),
we have ] ) ) )
VIR = s Vim@)] = (g Blmda () +0 (7).

Also, by condition CRA(iv),
Qn

€n

E[{mn(z, 09 + sen) — mp(z, 00) H{mn(z, 00 + te,) — mn(z,00)}] — Co(s, t).

Therefore,

. 1 1 1 1
V[Hg?kl] - @[Vn,kl + 0(1)] +0 <n> &3 Vkl +o0 < 3 3)

’I’LTL
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where, using Co(s, —s) = 0 and Cy(s,t) = Co(—s, —t),

q
Vo = 162 E[mﬁkz(Z)Z]
n

1
— g[Co(ek + e, e + el) + Co(ek — e, e — el) — 2C0(ek + e, e, — el) — 2C0(ek + e, —e + el)]
= Vp.

A.1.4 The Benchmark Case

The remainder of the supplemental appendix verifies Condition CRA for the four examples in the
paper. In three of those examples (namely, maximum score, panel maximum score, and empirical
risk minimization), the function m,, does not depend on n. To state a simplified version of Condition
CRA applicable in such cases, let the function m, be denoted by mg and for any § > 0, define
mo(z) = sup |m(z)], Mo ={mgy(-,0) : 0 € O},
meMpy
and
dS(z) = sup |d(z)|, DS ={mo(-,0) —mo(-,6): 80 c O}

Condition CRA( (Cube Root Asymptotics, benchmark case) The following are satisfied:
(i) My is manageable for the envelope mg and E[mg(z)?] < occ.
Also, for every 0 > 0, supgcg\o; My(0) < My(6p).
(ii) B is an interior point of @ and, for some 6 > 0, My is twice continuously differentiable
on @). Also, Hy = —0?My(80)/06000’ is positive definite.
(iii) For some ¢ > 0, {Dgl : 0 < &' < ¢} is uniformly manageable for the envelopes Jg/ and
supgs'<s BldY (2)2/6'] < oo.
(iv) For every 8, > 0 with §,, = O(n~'/3), n=1/3E[d}" ()] = o(1) and, for all s,t € R? and
for some Cy with Cy(s,s) + Co(t,t) — 2Co(s,t) > 0 for s # t,

sup iIE;[{mo(z, 0 + 0,,8) — mo(z,0)}{mo(z,0 + ont) —mo(z,0)}] — Co(s,t)| = o(1).
gcein 17n

(v) For every 6, > 0 with §,, = O(n~/3),

lim limsup sup E[I(d5(z) > C)d5(z)?/d] = 0
C—00 n—oo 0<6<dn

and supg g1 s Ellmo(z,0) — mo(z, 0)[/]16 — ] = O(1).

Lemma A.11 If Condition CRAy is satisfied, then Condition CRA is satisfied with g, = 1.

A.2 Example: Maximum Score

To state sufficient conditions for Condition CRA( in this example, let F,, denote the conditional

distribution function of a given b.
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Condition MS For some § > 0, Sp > 1, and Sys > 2, the following are satisfied:
(i) 0 < P(y = 1|x) < 1 almost surely and Fy,;, x,(u|71,%2) is S times continuously differen-
tiable in w and x1 with bounded derivatives.
(ii) The support of x is not contained in any proper linear subspace of R E[||x2]?] < oo,
and conditional on x2, z1 has everywhere positive Lebesgue density. Also, I}, |4, (z1]x2) is
Sr times continuously differentiable in x; with bounded derivatives.
(iii) © is compact and 6 is an interior point of ©.
(iv) M™(0) = E[m"(z, 0)] is Sys times continuously differentiable in 6 on @ and

H"™ = 2B[fujz; x, (0] — X500, %2) fi, x, (X500 x2) X2%5]

is positive definite.

Corollary MS Suppose Condition MS is satisfied. Then Condition CRA is satisfied with g, = 1,
Hy = H*, and Cy = C™, where

C™(s, t) = B[y, x, (—X500|%2) min{|xs|, |x5t[}1(sgn(x5s) = sgn(xjt))].
Alternative representations of H" and C™ are available. In particular, defining

() = {ailE(?y _ 1|x1,><2>} Fony (@112)

z1=—x500

= 2fu\:tl,x2 (O| - X/2007 X2)f21|XQ(_X/200|X2)

and
P (x2) = E[(2y — 1)2|1‘17X2]fx1|x2 (:E1|x2)‘$1:7x,260
= fxl‘XQ(_X/260|X2)7
we have
H" = E[n" (x2)x2x5]
and

C"(s,t) = E[y" (x2) min{|xjs|, [x5t[}1(sgn(x)s) = sgn(x;t))]-

Similar representations will be obtained for the other two maximum score examples.

As an estimator of H"S, the generic numerical derivative estimator can be used directly. An-
other option is to employ a “plug-in” estimator, where the conditional densities are replaced by
nonparametric estimators thereof. As a third alternative, consider the example-specific construc-
tion ﬁ’ff discussed in the paper. To obtain results for that estimator, we impose some standard

conditions on the (derivative of the) kernel function.

Condition K The following are satisfied:
(i) S K(w)2du+ [o(1+ [ul*)|K (u)|du < oo.
(i) [z K (u)du = 0, Jz uK (u)du = —1, and Iz u? K (u)du = 0.
(ili) [ K (u)?du < 0o, where K (u) = sup,, |K(v) — K(u)|/]v—ul.
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Under Condition K, I.’{%S admits counterparts of Lemmas 1 and 2 in the paper. To state these,
we let A", and HYS denote element (k,[) of HYS and H"S, respectively, and define

Bu = E[{F"Y (x2) + 2P (x2) + F*Y (x2)/3} w0 2] / WK (u)du
R

and
Vi = QE[FéO’l)(Xg)x%,kazil]/RK(U)2du,
where 9, = €} X2 and

07 (X2) = = Fujzy xo (U1 + U, X2) = F %, (T1]X2)
ou! oz}

u=0,r1=—x560
Lemma MS Suppose Conditions MS and K hold.

(i) If hy — 0, nh3 — oo, and if B[||x2]|®] < co, then HYS —p H"S,

(i) If also Sp > 3 and Sy > 4, then ﬁxskl admits an approximation ﬁgskl satisfying

~ . 1 1
MS MS 2
Hoe =t <h" " m) o (ﬁ)

where the Op(1/Y/n) term does not depend on h,, and where

. 1 1
[YS _ prlsy2 42 4
E[( n,kl kl ) ] hanl nh% Vi +o <hn nh%) :

A.2.1 Proof of Corollary MS
By Lemma A.11, it suffices to verify that Condition CRAy is satisfied.

Condition CRAy(1). The manageability assumption can be verified using the same argument as
in Kim and Pollard (1990). Note that the function |m"(z, 8)| is bounded by unity in this example,
and thus finite second moment condition holds. It is easy to show that 6y uniquely maximizes
My(0) over the parameter set. Well-separatedness follows from unique maximum, compactness of

the parameter space, and continuity of the function My(8).
Condition CRA(%). Conditions MS(iii)-(iv) imply this condition with Hy = H".

Condition CRAy(iii). Uniform manageability can be verified using the same argument as in
Kim and Pollard (1990). Note dj(z) = SUP|g_g,|<s [1(71 + x50 > 0) — 1(21 + x56¢ > 0)]. The
condition supgs<s E[d} (z)]/8' < oo is verified in Abrevaya and Huang (2005).

Condition CRAy(iv). Since dj(z)* = di(z), BldS" (z)*] = O(,), which implies the first condi-

tion. Also,
C™(s, t) = Bl fyy e, (—x500%2) min{|xs|, |x5t]}1(sgn(x)s) = sgn(x)t))]
satisfies C®(s,s) + C"(t,t) — 2C"(s,t) > 0 for s # t. Finally, C*® admits the representation

C(s,t) = %[BMS(S) +B%(t) = BB(s —t)],  B™(s) = B [fox; (—x)00[%2) x5 -
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Using this representation and the fact that 2xy = 22 +y% — (z —y)?, the displayed part of Condition
CRAq(iv) can be verified with Cg = C* by showing that for §,, = O(n~1/3),

L Bm"S(2,0 + 6,8) — m* (2,0 + 6,8)|% — BS(s — t)| = o(1).

sup 5
n

6c@)"
Defining 0s,, = 0 + d,s and 0t , = 0 + d,t, we have, uniformly in 8 € @8”,

1
—E[m"(z,0s,,) — m"(z, 0¢,,)[>

On
1 1
= 5—E []l(xl + x'2957n >0>x1 + X’QBWL)] + 5—E []l (ac1 + x'29t,n >0>z1+ X'QBS,H)]
n n
1 *Xzet,n , , 1 *Xges,n , ,
= 5—E / Forpxo (T1[X2)dz1 1 (x5t < Xhs) | + 6—1&‘4 / Forjxo (T1X2)dz11 (X8 < Xt)
n Xlzes,n n 7x120t7n

=E [fw1|x2(—x’20|x2)x'2(s —t)1 (X/Qt < Xés)} +E [fml‘m(—x'29|x2)x/2(t —s)l (x'zs < Xét)] +0(1)
= E[fs,x, (—x500]x2)[x5s — x5t[] + o(1),
from which the desired result follows.

Condition CRAg(v). The first part easily follows from d3(z) < 1, while the second part follows
from the verification of Condition CRAq(iv).

A.2.2 Proof of Lemma MS
A.2.2.1 Part (i) [Consistency]

Defining

n

- 1 . .
TS = 3 (20— DKoo + g0 o, TES(0) = —Bl(2y — 1) (o1 + x0)x0x),
=1

we obtain the decomposition
TMS _ s MS MS
H°>=H"+R, +8S,°,
where

~ - — ~MS —
RIS = FIS — FS - FS(0)) + FIS(60), SIS = ES(O])) - FIS(00).

The proof will be completed by showing that A —p H"S RM = op(1), and S!S = op(1).

First, using the dominated convergence theorem and fR uK (u)du = —1, we have

HMS(O()) (2y — 1) (:L‘l + X/200) XQXIQ]
_E |: 1-— 2Fu|zl xz( Uhfn|uhn - X/2907X2)

h fw1|x2( X200|X2) ()dux2x2
— 2E[F; 1’1)(X2)X2x2]/uf((u)du
R

%\

= 2B[fufe, x; (0] = X500, X2) fi, x, (— X200 [%2)x0%5] = H'™.
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Moreover, H!® — H"5(0y) = op(1) because each element has mean zero and a variance that is
bounded by a constant multiple of

E[Kn(z1 + x560)%] _ 0 < ! ) =o(1).

n nh3

As a consequence, H"S —p H"S,
Next, R" = op(1/+1/nh3) = op(1) follows from Pollard (1989, Theorem 4.2) if it can be shown
that, for every C > 0,

hiE

sup | K (21 4+ x50) — Ky (21 + x500)?||x2|[*| = o(1).
116—60||<Cn—1/3

Defining K, (u) = K (u/hy)/hn, we have, by Condition K(iii),

sup | K (21 4 x50) — K (21 + x500)] <
|l0—60||<Cn=1/3

Wf(n(ml + x560)||x2 ],
n

and therefore, using nh3 — oo,

hiE

sup | K (21 + x50) — Ky, (21 + x500)|?[|x2|*
||6—80||<Cn—1/3

_ 1
Bl a1+ 538021 = O (i ) = ol0),

2
n2/3h,
Finally, defining
1= 2F, |3, xo (—uhy + X58|uhy, — x5600 — x50, %2)

Eo(u,8,%x2) = N o1[%2 (uhy, — x50 — x568|x2)
1= 2Fy 4, x, (—uhp|uh, —x5600,%2)
- [21,%2 h 2 fm1|xz(Uhn - X/290|X2)7
we have
sup |HIS(0) —H®(60)|| = sup E [/ §n(u,5,xQ)K(u)dux2x'2] ‘
|l6—80[|<Cn~1/3 |6]|<Cn—1/3 R
< E {/ sup |€n(u,57X2)HK(u)|du} |X2|!2]
R ||§||<Cn—1/3
— 0

for any C' > 0, where the last line uses the dominated convergence theorem.

A.2.2.2 Part (ii) [Approximate MSE]

It was shown in the proof of part (i) that R™S,, = op(1//nhy). Also, Taylor’s theorem and Condition
K(ii) can be used to show that for any C' > 0, we have, uniformly in ||d,|| < C//n,

H'S,(00+6,) = HS +R2B{FM (x0) + FP (x2) + YV (x2) /3 wg ] / u? K (u)du
R

H{AB[FM (xg) a9 9. %0] + 2B[FY (x)a0 p2,1%2] V6 + 0(h2),
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implying in particular that
St = (UBLFG") (x0)a s o] + 2BFy ) (x2)s ez 3]} (B — B0) + 0p(17).
As a consequence, lffg?kl - ﬁg?kl = op(h? +1/y/nh3) + Op(1/¥n), where the Op(1/¥/n) term
{4B[FS"? (xa)s pva,30] + 2BIE (30) 0 19,10 (B — 09)

does not depend on h,,.

Next, we approximate the moments of H gskl By the previous paragraph,

E[H)S,] — Hf = H!S5(00) — Hif = hi By + o(e})),

n

where
Bu = B{F"Y (x2) + F2?(x2) + F* (x2)/3} w0 ] / WK (u)du.
R
Also,
. 1 . 1. .
VIHS] = EV[(QZJ — 1)Ky (1 + x500) 20 1T2,] = ﬁV[Kn(xl + x500) 2,k 22,]
1 . 1
= —E[K,(z1 + Xé@o)zx%,kx%l] +0 (>
n n
1 1
- .V —
nh3 k¥ O (nh%) ’
where
o 3L rp 2.2 21 / 2 2 N2
Vie = lim hyE[Ky (21 4 x3600) 73,73 ] _E[fxﬂxz(_X200|X2):E2,kx2,l]/K(u) du
n—oo R

= 2E[Féo’1)(x2)x§7ka:§7l]/K(U)Qdu.
R

A.2.3 Rule-of-Thumb Bandwidth Selection

We provide details on the rule-of-thumb (ROT) bandwidth selection rules used in the simulations
reported below. To construct ROT bandwidths, we choose a reference model involving finite di-
mensional parameters and calculate/approximate the corresponding leading constants entering the
approximate MSE of HS and H.

Specifically, we assume u|x ~ N(0,02(x)) and z1|x2 ~ N (i, 02), where we will specify some

2
u

I P . () B <x’200 + u1> [(x'zeo + u1>2 i 1] |

O'U(—XIQG(),XQ)O‘? g1 01

parametric specification on ¢2(x) = o2 (x1,%3). Then, in this reference model, F0(2’2) (x2) =0,

and

gD (x2) = gj(i?))amb <Xé0001+ Ml) (1= Gu(X)7u(x) + 26u(x)?

)
x1=—x500

where ¢ is the standard normal density and where &, (x) = 9o, (x)/0z1 and 5,(x) = 0%0,(x)/03.
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A.2.3.1 Plug-in Estimator HS
Given our reference model, natural estimators of the bias constants

Bu = B (x2) + B xa) 3] | K (w)du
R

are

1~ - . :
- Z{F,(Ll’g) (x2i) + Fr(l?”l)(in)/?)}e;foiefxm] / w3 K (u)du,
i=1 R
where Fél’?’) and ﬁ}sg’l) are constructed using maximum likelihood for the parametric reference

model (i.e., heteroskedastic Probit) together with a flexible parametric specification o2 (x) = v'p(x)

for 02 (x), with p(x) denoting a polynomial expansion.

Similarly, natural estimators of the variance constants
V = 9R[FOD 2 2 K(uw)2d
= 2B[Fy " (x2) 2 3] A (u)”du,

are given by

N A .
Vn =2 |- ZFT(LO’U (Xgi)(ez}(gi)z(e;xm)Qi / K(U)Qdu
i R
A.2.3.2 Numerical Differentiation Estimator H
In our reference model, the bias constants are of the form

Bu = —BI{Fy"Y (x2) + F* (x0) /313 21 + o )],

natural estimators of which are given by
SRR .
n > {E (x20) + B (x20) /3}H{ (e x2:) (efxai) + (€} x2:) (€]x2i)*}.
i=1
Similarly, natural estimators of the variance constants

Vi = {QBg(ek) + 280(61) — Bg(ek + el) — Bo(ek — el)}/16, B()(S) = QE[FSOJ)(XQ)‘X&SH,

are given by

1 « .
qn > {2le x| + 2lefxail — |(er + e1)xail — |(ex — 1) xai FE"Y (x3:).
i=1

A.3 Example: Panel Maximum Score

To state sufficient conditions for Condition CRA( in this example, define

P (x3) — {fmwxl,m)} Fon (@1]52)

z1=—x500

Condition PMS For some § > 0, the following are satisfied:
(i) For every u € R, 0 < F, 1%, X,,0(u1|X1, X2, 0) = Fyx; X,,0(u2(X1, X2, a) < 1 almost
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surely. Also, E[y|x1,x2] is continuously differentiable in z; with bounded derivative, and
E[y?|z1, x2] is continuous in z.

(ii) The support of x is not contained in any proper linear subspace of R, E[[|x2|?] < oo,
and conditional on xg, 1 has everywhere positive Lebesgue density. Also, Fy |x,(71]x2) is
continuously differentiable in x; with bounded derivative.

(iii) © is compact and 6y is an interior point of ©.

(iv) MP"S(0) = E[m™™3(z, 0)] is twice continuously differentiable in @ on @ and

H™ = B[™ (x2)x2x))
is positive definite.

Letting
wPMS(XQ) = E(y2|.’IJ1, XZ)fxl\xg (.’,1?1 |X2)‘

x1=—x500

and proceeding as in the proof of Corollary MS, the following result is obtained.

Corollary PMS Suppose Condition PMS is satisfied. Then Condition CRA is satisfied with g, =
1, Hy = H™, and Cy = C™S, where

C™ (s, t) = B[y™ (x2) min{[x5s, |x5t|}1(sgn(x3s) = sgn(x5t))].

The case-specific estimator HEYS of HP admits a counterpart of Lemma MS, but for brevity

we omit a precise statement.

A.4 Example: Conditional Maximum Score

To state sufficient conditions for Condition CRA in this example, let X denote the support of
x = (x1,x5)" and for § > 0, let W? = {w €R?: ||w|| < 6}. Also, define

p(w;0) = E [yl(z1 + x50 > O)| W] fw(W),

. 0

(1 (w3 0) = %MCMS(w;H) =E [{E(y‘aﬁl,X2,W)fx1|x2,w<$1’X2,W)}‘xl:ix,ze XQ‘ W] fw(w),
.- CMS 0 s
i (w; 6) = m# (w;0),

and 5
™ (xg) = {axlE(y’Jsz,W)} fai|xo,w(T1[X2, W)

x1=—x500,w=0

Condition CMS For some § > 0 and P > 1, the following are satisfied:

(i) For some strictly increasing F,
P(Y;f = 1‘X17 X2>X37 047}/237 s >Y;f—1) = F[Xlt + (X/2t7 Y;,—l>00 + Oé], t=1,2,3.
Also, on X x W, E(y|z1, X2, w) is differentiable in x1, OB (y|21, X2, w)/0x1 is bounded and

continuous in (z1,w), and BE(y?|z1, X2, w) is positive and continuous in (21, w).
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(ii) B[||x2||?|w] is bounded on W? and for every w € W?, the support of x given w is not
contained in any proper linear subspace of R4, Also, on X x W9, foi|xa,w(T1]X2, W) is
positive, bounded, and continuous in (z1,w) and fw(w) is positive and continuous in w.
(iii) © is compact and 6y is an interior point of ©.

(iv) pu™(w;0) is twice continuously differentiable in @ on ©) with bounded derivatives,
18 (w; 0) is uniformly (in 6 € ©) continuous in w at 0, 1™ (w; 6p) is P times continuously

differentiable in w on W2, ji™(w; ) is uniformly (in @ € @) continuous in w at 0, and

H™ = E [nCMS(XQ)x2x'2’ w]| fw(w)|

w=0
is positive definite.

(v) & is bounded, of order P, and supported on [—1,1]%. Also, nb? — oo and nb?+3F — 0.

Let

¢CMS(X2) = E(y2 ’.731, X2, W)fw1|x2,w(‘rl |X27 W) }$1:—X'290,W:0 .

Corollary CMS Suppose Condition CMS is satisfied. Then Condition CRA is satisfied with ¢, =
bl, Hy = H™, and Cy = C™, where

C™(s,t) = B [¢™(x2) min{|x)s|, [x5t[} 1{sgn(xzs) = sgn(xyt) }| w] fu(w)|,,_o - /Rd R(v)2dv,

The case-specific estimator ﬁflMS of H™® admits a counterpart of Lemma MS, but for brevity

we omit a precise statement.

A.4.1 Proof of Corollary CMS

Condition CRA(i). Because k, does not depend on €, uniform manageability can be established
by proceeding as in the maximum score example.
Also, My (z) = |kn(W)| satisfies ¢, E[m,(z)?]=b20(1/b%) = O(1).

Next, using the representations

M,(0) = /]Rd w(vby; 0)k(v)dv and My(0) = /Rd 1(0; 0)k(v)dv,

we have

sup | M (0) — Mo(0)| < { sup  |u(w;0) — M(O;G)}/ [£(v)|dv = o(1),
6co 0cO,||w||<b, R4
where the equality uses uniform (in 6 € ) continuity of u(w; ) at w = 0.

Finally, well-separatedness follows from compactness of ®, continuity of My(6) = 1(0;6) in 6,
and the fact (shown by Honoré and Kyriazidou (2000, Lemmas 6 and 7)) that 6 is the unique

maximizer of My(8).
Condition CRA(ii). We have

aaeMn(B) = /Rd [(Vby; 0)k(V)dv, 880M0(0) = /Rd ((0;0)k(v)dv,
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and

0006’ °

0? .
oM Mal®) = [ | 0:0)(v)av.

2
0 M, (0) = /]Rd ji(vby; 0)k(v)dv,

where, using uniform (in @ € @) continuity of ji(w; ) at w = 0,
o2

D 1 90067

0c®;

[an)—Mo(e)]H < {9 o |zz<w;o>—zz<o;e>} [ Iet)lay = of0),

Also, by a standard bias calculation for kernel estimators,

;)Mn(eo) _ /R b B)s(v)v = (000 + O(BE),

where it follows from Honoré and Kyriazidou (2000) that [(0;0¢) = 0My(00)/00 = 0. As a

consequence, 1,||0M,(80)/08|| = O(V/nbi3F) = o(1).
Finally, Hy = —ji(0; 89) = H® is positive definite by assumption.

Condition CRA (#ii). Because k, does not depend on €, uniform manageability can be estab-

lished by proceeding as in the maximum score example. For this example,

B(z)=| sup U(xh0g < —z; <x40)+ sup 1(xh0 < —z1 < x500) | |kn(W)].
6—60l|<5 |6—60l|<5

By change of variables and using boundedness of f;, x, w(Z1]/X2, W), we have, uniformly in 6,
bRE[d) (2)° /6] = bR O(B[|[x2]|kn(w)?]) = O(1).
As a consequence, ¢, SUPg<y'<s E[d? (z)2/8'] = O(1).
Condition CRA (iv). Using d’ (z)* < 8d% (z)|kn (W), it follows from calculations similar to those
above that ¢2r 'E[d%"(z)*] = O(r;;16,) = o(1).

As in the maximum score example, C™M3(s,s) + C™M(t,t) — 2C™M5(s,t) > 0.

Finally, the representation

{m&M (2,0 + 6,5) — mE(z,0)} {m (2,0 + 6,t) — m(z, 0)}

= y?[1{6, min(xys, x5t) > —z1 — x50 > 0} + 1{5, max(x)s, xht) < — 21 — x50 <0}]k,(W)?
can be used to show that, uniformly in 8 € @8”,

g—nE[{meMs(z, 0 + 0,8) — m(2,0)H{mS (2,0 + 6,t) — m™(z,0)}] = C™(s, t) + o(1).

Condition CRA(v). The first condition follows from g,d5(z) < supycga |£(V)|. The second

condition follows from the calculation similar to the covariance kernel calculation.

A.5 Example: Empirical Risk Minimization

In this example, we follow Mohammadi and van de Geer (2005, Theorem 1) when stating primitive
conditions. Let F' denote the distribution function of = and let P(z) = Ply = 1|z].
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Condition ERM The following are satisfied:
(i) P(0) < 1/2 and P admits a continuous derivative p in a neighborhood of each element of
0.
(ii) F' is absolutely continuous and its Lebesgue density f is continuously differentiable in a
neighborhood of each element of 6.
(iii) @y is an interior point of ©.
(iv) 8o = (60,1,60,2, - - ,00,4)" is the unique minimizer of Plhg(x) # y] and p(6o¢)f(0or) # O
for ¢ € {1,---,d}.

Corollary ERM Suppose Condition ERM is satisfied. Then Condition CRA is satisfied with
qn = 1, Hy = HE™ and Cy = CE™ where

p(00,1) f(0o,1) 0 - 0

HERM — 9 0 —p(0o2)f(0o2) --- 0

)
)

(—=1)™p(00.4) f (00,4)

and, fors = (s1, -+ ,8q) and t = (t1,--- ,tq)’,

d
CP¥(s, t) Zf (6o,¢) min{[s], [te|}1{sgn(s¢) = sgn(te)}.
-1

A case-specific (plug-in) estimator of HE®™ is given by the diagonal matrix I~{7EZRM with diagonal

elements
ERM

A = (—1) 12, (0 ) faOry),  €=1,....d,

where p, and f,, are some nonparametric estimators of p and f. This estimator is consistent when-

ever its ingredients p, and f,, are.

A.5.1 Proof of Corollary ERM
By Lemma A.11, it suffices to verify that Condition CRA is satisfied.

Condition CRAg(i). Manageability of My follows from {1(hg(x) # y) : 8 € O} forming a VC
subgraph class. Also, the envelope is bounded by 1. Finally, SUDgc@\0f My(0) < My(0y) for every

d > 0 because © is compact, My is continuous, and 8 is the unique maximizer of My(8).

Condition CRAy(ii). By assumption, 8y belongs to the interior of @¢. Mohammadi and van de
Geer (2005) show that, for odd ¢,

82

6

and that a similar formula holds for even ¢ as well. In particular, My is twice continuous differ-

Bllo(z) # ) = 20(600) f(00) + (2P(60) ~ 1) 55 £(00),

entiability on @)8. Finally, positive definiteness of Hy = HEM is established in Mohammadi and
van de Geer (2005).
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Condition CRAg(i1i). This condition corresponds to the first part of (vii) in Theorem 7 of
Mohammadi and van de Geer (2005).

Condition CRAg(iv). Since dj(z)* = di(z), E[d)"(z)*] = O(0,), which implies the first condi-
tion. For the second part, Mohammadi and van de Geer (2005) show that

d

Co(s, t) = f(0o,e)[min{sy, te}1(se > 0,2 > 0) — max{se, te}(s; < 0,2, < 0)].
=

Using the representations

Ld/2] [(d+1)/2]
m0(17x7 0) = - Z 1 ('r € [025702€+1>)7 mo(—l,x,O) = - Z 1 (113 S [02571702@))7
/=0 /=1

it can be shown that, for 8 in the interior of @ and for §,, small enough,

{mo(2, 0 + d,s) — mo(2,0)}{mo (2,0 + dnt) — mo(2,60)}

d
Z ]l($ S [015 + 0n max{sb tg}, 95))][(5@ < 0,8 < 0) + ]l(:L‘ S [(94, Op+ dn min{Sg,tg}))]l(Sg > 0,tp > 0)
(=1
As a consequence,

;n [{mo(z, 0 + 0,,8) — mo(z, 0)}{mo(z, 0 + 0,t) — mo(z,0)}]
d
= Z f(0¢)[— max{sg, t¢}1(s; < 0,t, < 0) +min{sy, t}1(se > 0,2, > 0)] 4+ o(1)

1

~
Il

I
M~

f(@o’g)[— maX{Sg,tg}]l(Sg < 0,tp < 0)+ min{Sg,tg}]l(Sg > 0,1 > O)] + 0(1)

~
Il

1

. . 5n
uniformly in 6 € ©".

Condition CRAq(v). The condition in display is identical to the second part of (vii) in Theorem
7 of Mohammadi and van de Geer (2005). The second assumption corresponds to (vi) in Theorem
7 of Mohammadi and van de Geer (2005).
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