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Abstract

This paper proposes a valid bootstrap-based distributional approximation for M -estimators

exhibiting a Chernoff (1964)-type limiting distribution. For estimators of this kind, the standard

nonparametric bootstrap is inconsistent. The method proposed herein is based on the nonpara-

metric bootstrap, but restores consistency by altering the shape of the criterion function defining

the estimator whose distribution we seek to approximate. This modification leads to a generic

and easy-to-implement resampling method for inference that is conceptually distinct from other

available distributional approximations. We illustrate the applicability of our results with four

examples in econometrics and machine learning.
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1 Introduction

In a seminal paper, Kim and Pollard (1990) studied estimators exhibiting “cube root asymptotics”.

These estimators not only have a non-standard rate of convergence, but also have the property that

rather than being Gaussian their limiting distributions are of Chernoff (1964) type; i.e., the non-

Gaussian limiting distribution is that of the maximizer of a Gaussian process. Kim and Pollard’s

results cover not only celebrated examples such as maximum score estimator of Manski (1975)

and the isotonic density estimator of Grenander (1956), but also more contemporary estimators

arising in examples related to classification problems in machine learning (Mohammadi and van de

Geer, 2005), nonparametric inference under shape restrictions (Groeneboom and Jongbloed, 2018),

massive dataM -estimation framework (Shi, Lu, and Song, 2018), and maximum score estimation in

high-dimensional settings (Mukherjee, Banerjee, and Ritov, 2019). Moreover, Seo and Otsu (2018)

recently generalized Kim and Pollard (1990) to allow for n-varying objective functions (n denotes

the sample size), further widening the applicability of cube-root-type asymptotics. For example,

their results cover the conditional maximum score estimator of Honoré and Kyriazidou (2000).

An important feature of Chernoff-type asymptotic distributional approximations is that the

covariance kernel of the Gaussian process characterizing the limiting distribution often depends on

an infinite-dimensional nuisance parameter. From the perspective of inference, this feature of the

limiting distribution represents a nontrivial complication relative to the conventional asymptoti-

cally normal case, where the limiting distribution is known up to the value of a finite-dimensional

nuisance parameter (namely, the covariance matrix of the limiting distribution). The dependence

of the limiting distribution on an infinite-dimensional nuisance parameter implies that resampling-

based distributional approximations seem to offer the most attractive approach to inference in

estimation problems exhibiting cube root asymptotics. Unfortunately, however, the standard non-

parametric bootstrap is well known to be invalid in this setting (Abrevaya and Huang, 2005; Léger

and MacGibbon, 2006; Kosorok, 2008; Sen, Banerjee, and Woodroofe, 2010). The purpose of this

paper is to propose a generic and easy-to-implement bootstrap-based distributional approximation

applicable in the context of cube root asymptotics.

As does the familiar nonparametric bootstrap, the method proposed herein employs bootstrap

samples of size n from the empirical distribution function. But unlike the nonparametric bootstrap,
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which is inconsistent, our method offers a consistent distributional approximation for estimators

exhibiting cube root asymptotics. Consistency is achieved by altering the shape of the criterion

function defining the estimator whose distribution we seek to approximate. Heuristically, the

method is designed to ensure that the bootstrap version of a certain empirical process has a mean

resembling the large sample version of its population counterpart. The latter is quadratic in the

problems we study, and known up to the value of a certain matrix. As a consequence, the only

ingredient needed to implement the proposed “reshapement”of the objective function is a consistent

estimator of the unknown matrix entering the quadratic mean of the empirical process. Such

estimators turn out to be generically available and easy to compute.

This paper is not the first to propose a consistent resampling-based distributional approxima-

tion for cube-root-type estimators. For canonical cube root asymptotic problems, the best known

consistent alternative to the nonparametric bootstrap is probably subsampling (Politis and Ro-

mano, 1994), whose applicability was pointed out by Delgado, Rodriguez-Poo, and Wolf (2001).

Related applicable methods are the m out of n bootstrap (Bickel, Götze, and van Zwet, 1997),

whose applicability was discussed and extended by Lee and Pun (2006) and Lee and Yang (2020),

the rescaled bootstrap (Dümbgen, 1993), and the numerical bootstrap (Hong and Li, 2020). In

addition, case-specific (smooth or non-standard) bootstrap methods have been proposed for lead-

ing examples such as monotone density estimation (Kosorok, 2008; Sen, Banerjee, and Woodroofe,

2010), maximum score estimation (Patra, Seijo, and Sen, 2018), and the current status model

(Groeneboom and Hendrickx, 2018). For the more generic cube-root-type estimators analyzed in

Seo and Otsu (2018), subsampling appears to be the only method available, and indeed the authors

discuss in their concluding remarks the need for (and importance of) developing resampling meth-

ods based on the standard nonparametric bootstrap. Our paper appears to be the first to provide

one such method.

Like ours, each of the resampling methods mentioned above can be viewed as offering a “robust”

alternative to the standard nonparametric bootstrap but, unlike ours, existing methods achieve

consistency by modifying the distribution used to generate the bootstrap sample. In contrast,

our bootstrap-based method achieves consistency by means of an analytic modification of the

objective function used to construct the bootstrap-based distributional approximation. As further

discussed below, this approach results in a procedure that is conceptually related to the bootstrap
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methods developed by Andrews and Soares (2010) and Fang and Santos (2019) in other econometrics

contexts.

Implementation of our procedure is not computationally demanding. Indeed, the only ingredient

needed to implement our modification on the objective function is a consistent estimator of a

certain Hessian matrix. We propose a generic estimator based on numerical derivatives and present

a consistency result as well as an approximate mean square error expansion for that estimator.

In addition, we illustrate how example-specific features can be sometimes exploited to construct

alternative estimators.

The paper proceeds as follows. Section 2 is heuristic and outlines the main idea underlying

our approach in the M -estimation setting of Kim and Pollard (1990). Section 3 then makes that

heuristic discussion rigorous in a more general setting similar to that of Seo and Otsu (2018).

Section 4 illustrates our bootstrap-based inference method with four examples: the maximum score

estimator of Manski (1975, 1985), the conditional maximum score panel data estimator of Manski

(1987), the conditional maximum score dynamic panel data estimator of Honoré and Kyriazidou

(2000), and the classification estimator of Mohammadi and van de Geer (2005). Section 5 reports

simulation evidence for the case of the maximum score estimator, and Section 6 concludes. Section

7 describes the proof of our main result, while the supplemental appendix contains omitted proofs

and details.

2 Heuristics

Suppose θ0 ∈ Θ ⊆ Rd is an estimand admitting the characterization

θ0 = argmax
θ∈Θ

M0(θ), M0(θ) = E[m0(z,θ)], (1)

where m0 is a known function, and where z is a random vector of which a random sample z1, . . . , zn

is available. Studying estimation problems of this kind for non-smooth m0, Kim and Pollard (1990)

gave conditions under which the M -estimator

θ̂n = argmax
θ∈Θ

M̂n(θ), M̂n(θ) =
1

n

n∑
i=1

m0(zi,θ),
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exhibits cube root asymptotics:

3
√
n(θ̂n − θ0) argmax

s∈Rd
{G0(s) +Q0(s)}, (2)

where  denotes weak convergence, G0 is a non-degenerate zero-mean Gaussian process, and

Q0(s) = −s′H0s/2, where H0 = −∂2M0(θ0)/∂θ∂θ
′.

Whereas the matrix H0 governing the shape of Q0 is finite-dimensional, the covariance kernel of

G0 in (2) typically involves infinite-dimensional unknown quantities. As a consequence, the limiting

distribution of θ̂n tends to be more diffi cult to approximate than Gaussian distributions, implying

in turn that basing inference on θ̂n is more challenging under cube root asymptotics than in the

more familiar case where θ̂n is
√
n-consistent and asymptotically normally distributed.

As a candidate method of approximating the distribution of θ̂n, consider the nonparametric

bootstrap. To describe it, let z∗1,n, . . . , z
∗
n,n denote a random sample from the empirical distribution

of z1, . . . zn and let the natural bootstrap analogue of θ̂n be denoted by

θ̂
∗
n = argmax

θ∈Θ
M̂∗n(θ), M̂∗n(θ) =

1

n

n∑
i=1

m0(z
∗
i,n,θ).

Then, the nonparametric bootstrap estimator of P[θ̂n−θ0 ≤ ·] is given by P∗n[θ̂
∗
n−θ̂n ≤ ·], where P∗n

denotes a probability computed under the bootstrap distribution conditional on the data. As is well

documented, however, this estimator is inconsistent under cube root asymptotics (Abrevaya and

Huang, 2005; Léger and MacGibbon, 2006; Kosorok, 2008; Sen, Banerjee, and Woodroofe, 2010).

For the purpose of giving a heuristic, yet constructive, explanation of the inconsistency of the

nonparametric bootstrap, it is helpful to recall that a proof of (2) can be based on the representation

3
√
n(θ̂n − θ0) = argmax

s∈Rd
{Ĝn(s) +Qn(s)}, (3)

where, for s such that θ0 + sn−1/3 ∈ Θ,

Ĝn(s) = n2/3[M̂n(θ0 + sn−1/3)− M̂n(θ0)−M0(θ0 + sn−1/3) +M0(θ0)] (4)

is a zero-mean random process, while

Qn(s) = n2/3[M0(θ0 + sn−1/3)−M0(θ0)] (5)

is a non-random function that is correctly centered in the sense that argmaxs∈Rd Qn(s) = 0. In

cases where m0 is non-smooth but M0 is smooth, Ĝn and Qn are usually asymptotically Gaussian
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and asymptotically quadratic, respectively, in the sense that

Ĝn(s) G0(s) (6)

and

Qn(s)→ Q0(s). (7)

Under regularity conditions ensuring among other things that the convergence in (6) and (7) is

suitably uniform in s, (2) then follows from an application of a continuous mapping-type theorem

for the argmax functional to the representation in (3).

Similarly to (3), the bootstrap analogue of θ̂n admits a representation of the form

3
√
n(θ̂

∗
n − θ̂n) = argmax

s∈Rd
{Ĝ∗n(s) + Q̂n(s)},

where, for s such that θ̂n + sn−1/3 ∈ Θ,

Ĝ∗n(s) = n2/3[M̂∗n(θ̂n + sn−1/3)− M̂∗n(θ̂n)− M̂n(θ̂n + sn−1/3) + M̂n(θ̂n)]

and

Q̂n(s) = n2/3[M̂n(θ̂n + sn−1/3)− M̂n(θ̂n)].

Under mild conditions, Ĝ∗n satisfies the following bootstrap counterpart of (6):

Ĝ∗n(s) P G0(s), (8)

where  P denotes conditional weak convergence in probability (defined as in van der Vaart and

Wellner, 1996, Section 2.9). On the other hand, although Q̂n is non-random under the bootstrap

distribution and satisfies argmaxs∈Rd Q̂n(s) = 0, it turns out that Q̂n(s) 9P Q0(s) in general. In

other words, the natural bootstrap counterpart of (7) typically fails and, as a partial consequence,

so does the natural bootstrap counterpart of (2); i.e., 3
√
n(θ̂

∗
n− θ̂n) 6 P argmaxs∈Rd{G0(s)+Q0(s)}.

To the extent that the inconsistency of the bootstrap can be attributed to the fact that the

shape of Q̂n fails to replicate that of Qn, it seems plausible that a consistent bootstrap-based

distributional approximation can be obtained by basing the approximation on

θ̃
∗
n = argmax

θ∈Θ
M̃∗n(θ), M̃∗n(θ) =

1

n

n∑
i=1

m̃n(z∗i,n,θ),

where m̃n is a suitably “reshaped” version of m0 satisfying two properties. First, G̃∗n should be
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asymptotically equivalent to Ĝ∗n, where G̃
∗
n is the counterpart of Ĝ

∗
n associated with m̃n :

G̃∗n(s) = n2/3[M̃∗n(θ̂n+sn−1/3)−M̃∗n(θ̂n)−M̃n(θ̂n+sn−1/3)+M̃n(θ̂n)], M̃n(θ) =
1

n

n∑
i=1

m̃n(zi,θ).

Second, and most importantly, Q̃n should be asymptotically quadratic, where Q̃n is the counterpart

of Q̂n associated with m̃n:

Q̃n(s) = n2/3[M̃n(θ̂n + sn−1/3)− M̃n(θ̂n)].

Accordingly, let

m̃n(z,θ) = m0(z,θ)− M̂n(θ)− 1

2
(θ − θ̂n)′H̃n(θ − θ̂n),

where H̃n is an estimator of H0. Then

3
√
n(θ̃

∗
n − θ̂n) = argmax

s∈Rd
{G̃∗n(s) + Q̃n(s)},

where, by construction, G̃∗n(s) = Ĝ∗n(s) and Q̃n(s) = −s′H̃ns/2. Because G̃∗n = Ĝ∗n, G̃
∗
n(s) P G0(s)

whenever (8) holds. In addition, Q̃n(s)→P Q0(s) provided H̃n →P H0. As a consequence, it seems

plausible that if H̃n →P H0, then 3
√
n(θ̃

∗
n − θ̂n) P argmax

s∈Rd
{G0(s) +Q0(s)}.

For the purposes of situating this paper in the literature, the following alternative heuristic

explanation of our approach may be useful. Restating the result in (2) as

3
√
n(θ̂n − θ0) S0(G0), S0(G) = argmax

s∈Rd
{G(s) +Q0(s)},

our procedure approximates the distribution of S0(G0) by that of S̃n(Ĝ∗n), where the distribution

of the bootstrap process Ĝ∗n approximates that of G0 and where S̃n(G) = argmax
s∈Rd

{G(s) + Q̃n(s)} is

an estimator of S0(G). In other words, our procedure replaces the functional S0 with a consistent

estimator (namely, S̃n) and its random argument G0 with a bootstrap approximation (namely, Ĝ∗n).

The same type of generic construction has appeared in the econometrics literature before, notably

in Andrews and Soares (2010) and Fang and Santos (2019).

Our bootstrap-based distributional approximation can be shown to be consistent also in the

more standard case where mn(z,θ) is suffi ciently smooth in θ to ensure that an approximate

maximizer of M̂n is asymptotically normal and that the nonparametric bootstrap is consistent. In

fact, θ̃
∗
n is (first-order) asymptotically equivalent to θ̂

∗
n in that standard case, so our procedure can

be interpreted as a modification of the nonparametric bootstrap that is designed to be “robust”to
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the types of non-smoothness that give rise to cube root asymptotics.

3 Main Result

When making the heuristics of Section 2 precise, we consider the more general situation where the

estimator θ̂n is an approximate maximizer (with respect to θ ∈ Θ ⊆ Rd) of

M̂n(θ) =
1

n

n∑
i=1

mn(zi,θ),

where mn is a known function, and where z1, . . . , zn is a random sample of a random vector z. This

formulation of M̂n, which reduces to that of Section 2 when mn does not depend on n, is adopted

in order to cover certain estimation problems where, rather than admitting a characterization of

the form (1), the estimand θ0 admits the characterization

θ0 = argmax
θ∈Θ

M0(θ), M0(θ) = lim
n→∞

Mn(θ), Mn(θ) = E[mn(z,θ)].

In other words, in the setting considered in this section, θ̂n approximately maximizes a function

M̂n whose population counterpart Mn can be interpreted as a regularization (in the sense of Bickel

and Li, 2006) of a function M0 whose maximizer θ0 is the object of interest. This generalization

is attractive because it allows us to formulate results that cover local M -estimators such as the

conditional maximum score estimator of Honoré and Kyriazidou (2000). Studying this setting,

Seo and Otsu (2018) gave conditions under which θ̂n converges at a rate equal to the cube root

of the “effective” sample size and has a limiting distribution of Chernoff (1964) type. Analogous

conclusions will be drawn below, albeit under slightly different conditions.

For any n and any δ > 0, define

m̄n(z) = sup
m∈Mn

|m(z)|, Mn = {mn(·,θ) : θ ∈ Θ},

and

d̄δn(z) = sup
d∈Dδn

|d(z)|, Dδn = {mn(·,θ)−mn(·,θ0) : θ ∈ Θδ
0}, Θδ

0 = {θ ∈ Θ : ||θ − θ0|| ≤ δ}.

Condition CRA (Cube Root Asymptotics) For some qn > 0 with rn = 3
√
nqn → ∞, the

following are satisfied:

(i) {Mn : n ≥ 1} is uniformly manageable for the envelopes m̄n and qnE[m̄n(z)2] = O(1).

7



Also, supθ∈Θ |Mn(θ)−M0(θ)| = o(1) and, for every δ > 0, supθ∈Θ\Θδ
0
M0(θ) < M0(θ0).

(ii) θ0 is an interior point of Θ and, for some δ > 0, M0 and Mn are twice continuously

differentiable on Θδ
0 and supθ∈Θδ

0

∥∥∂2[Mn(θ)−M0(θ)]/∂θ∂θ′
∥∥ = o(1).

Also, rn||∂Mn(θ0)/∂θ|| = o(1) and H0 = −∂2M0(θ0)/∂θ∂θ
′ is positive definite.

(iii) For some δ > 0, {Dδ′n : n ≥ 1, 0 < δ′ ≤ δ} is uniformly manageable for the envelopes d̄δ′n
and qn sup0<δ′≤δ E[d̄δ

′
n (z)2/δ′] = O(1).

(iv) For every δn > 0 with δn = O(r−1n ), q3nr
−1
n E[d̄δnn (z)4] = o(1) and, for all s, t ∈ Rd and for

some C0 with C0(s, s) + C0(t, t)− 2C0(s, t) > 0 for s 6= t,

sup
θ∈Θδn

0

∣∣∣∣qnδnE[{mn(z,θ + δns)−mn(z,θ)}{mn(z,θ + δnt)−mn(z,θ)}]− C0(s, t)

∣∣∣∣ = o(1).

(v) For every δn > 0 with δn = O(r−1n ),

lim
C→∞

lim sup
n→∞

sup
0<δ≤δn

qnE[1{qnd̄δn(z) > C}d̄δn(z)2/δ] = 0

and sup
θ,θ′∈Θδn

0
E[|mn(z,θ)−mn(z,θ′)|]/||θ − θ′|| = O(1).

To interpret Condition CRA, consider first the benchmark case where mn = m0 and qn = 1. In

this case, the condition is similar to assumptions (ii)-(vii) of the main theorem of Kim and Pollard

(1990), to which the reader is referred for a definition of the term (uniformly) manageable. The

differences between their assumptions and Condition CRA are technical in nature, since we need to

slightly strengthen their assumptions in order to be able to analyze the bootstrap. For instance, the

displayed part of Condition CRA(iv) is a locally uniform (with respect to θ near θ0) version of its

counterpart in Kim and Pollard (1990). More generally, Condition CRA can be interpreted as an

n-varying version of a suitably (for the purpose of analyzing the bootstrap) strengthened version of

the assumptions of Kim and Pollard (1990). The differences between Condition CRA and the i.i.d.

version of the conditions in Seo and Otsu (2018) are also technical in nature, but for completeness we

highlight two here. First, they control the complexity of various function classes using the concept of

bracketing entropy, while we follow Kim and Pollard (1990) and obtain maximal inequalities using

bounds on uniform entropy numbers implied by the concept of (uniform) manageability. Second,

whereas Seo and Otsu (2018) control the bias of θ̂n through a locally uniform bound on Mn −M0,

Condition CRA controls the bias through the first and second derivatives of Mn −M0.

Under Condition CRA, the effective sample size is nqn = r3n and if θ̂n is an approximate
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maximizer of M̂n, then rn(θ̂n − θ0) has a limiting distribution of Chernoff (1964) type. The

heuristics of the previous section are rate-adaptive (i.e., 3
√
n can be replaced by a generic rn), so

once again it stands to reason that if H̃n is a consistent estimator of H0, then the distribution

of rn(θ̂n − θ0) can be consistently estimated by that of rn(θ̃
∗
n − θ̂n), where θ̃

∗
n is an approximate

maximizer of

M̃∗n(θ) =
1

n

n∑
i=1

m̃n(z∗i,n,θ), m̃n(z,θ) = mn(z,θ)− M̂n(θ)− 1

2
(θ − θ̂n)′H̃n(θ − θ̂n),

with z∗1,n, . . . , z
∗
n,n being a random sample from the empirical distribution of z1, . . . , zn. A precise

statement is given in the following theorem.

Theorem 1 Suppose Condition CRA holds. If H̃n →P H0 and if

M̂n(θ̂n) ≥ sup
θ∈Θ

M̂n(θ)− oP(r−2n ) and M̃∗n(θ̃
∗
n) ≥ sup

θ∈Θ
M̃∗n(θ)− oP(r−2n ),

then

rn(θ̂n − θ0) argmax
s∈Rd

{G0(s) +Q0(s)}, (9)

and

rn(θ̃
∗
n − θ̂n) P argmax

s∈Rd
{G0(s) +Q0(s)}, (10)

where G0 is a zero-mean Gaussian process with covariance kernel C0 and Q0(s) = −s′H0s/2.

The algorithm for our proposed bootstrap-based distributional approximation is as follows:

Step 1. Using the sample z1, . . . , zn, compute θ̂n by approximately maximizing M̂n(θ).

Step 2. Using θ̂n and z1, . . . , zn, compute H̃n. (A generic estimator H̃n is given in Section 3.1.)

Step 3. Using θ̂n, H̃n, and the bootstrap sample z∗1,n, . . . , z
∗
n,n, compute θ̃

∗
n by approximately

maximizing M̃∗n(θ). (θ̂n and H̃n are not recomputed at this step.)

Step 4. Repeat Step 3 to generate draws from the distribution of rn(θ̃
∗
n − θ̂n).

3.1 Estimation of H0

A generic numerical derivative estimator of H0 is the matrix H̃ND
n with element (k, l) given by

H̃ND
n,kl = − 1

4ε2n
[M̂n(θ̂n+ekεn+elεn)−M̂n(θ̂n+ekεn−elεn)−M̂n(θ̂n−ekεn+elεn)+M̂n(θ̂n−ekεn−elεn)],
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where ek is the kth unit vector in Rd and where εn is a positive tuning parameter. Conditions

under which this estimator is consistent are given in the following lemma.

Lemma 1 Suppose Condition CRA holds and that rn(θ̂n−θ0) = OP(1). If εn → 0 and if rnεn →∞,

then H̃ND
n →P H0.

Plausibility of the high-level condition rn(θ̂n − θ0) = OP(1) follows from (9). To facilitate

practical implementation, it is useful to go beyond consistency and develop a Nagar-type mean

squared error (MSE) expansion that can be used to select εn. To state one such result for H̃ND
n,kl,

define

M̈n,kl(θ) =
∂2

∂θk∂θl
Mn(θ), M̈0,kl(θ) =

∂2

∂θk∂θl
M0(θ),

Bkl = −1

6

[
∂2

∂θ2k
M̈0,kl(θ0) +

∂2

∂θ2l
M̈0,kl(θ0)

]
,

and

Vkl =
1

8
[C0(ek + el, ek + el) + C0(ek − el, ek − el)− 2C0(ek + el, ek − el)− 2C0(ek + el,−ek + el)].

Lemma 2 Suppose the conditions of Lemma 1 hold and that, for some δ > 0, M̈0,kl and M̈n,kl are

twice continuously differentiable on Θδ
0 with supθ∈Θδ

0
||∂2[M̈n,kl(θ) − M̈0,kl(θ)]/∂θ∂θ′|| = o(1). If

C0(s,−s) = 0 and C0(s, t) = C0(−s,−t) for all s, t ∈ Rd, then H̃ND
n,kl admits an approximation Ȟ

ND
n,kl

satisfying

H̃ND
n,kl = ȞND

n,kl + oP

(
ε2n +

1√
r3nε

3
n

)
+OP

(
1

rn

)
,

where the OP(1/rn) term does not depend on εn and where

E[(ȞND
n,kl −Hn,kl)

2] = ε4nB
2
kl +

1

r3nε
3
n

Vkl + o

(
ε4n +

1

r3nε
3
n

)
, Hn,kl = −M̈n,kl(θ0).

The conditions C0(s,−s) = 0 and C0(s, t) = C0(−s,−t) are satisfied in all of the examples

we have analyzed. Using the lemma, the approximate MSE (AMSE), ε4nB
2
kl + r−3n ε−3n Vkl, can be

minimized by choosing εn proportional to r
−3/7
n , the optimal factor of proportionality being a

function of Bkl and Vkl. To be specific, the optimal εn is given by εAMSEn,kl = (3Vkl/4B
2
kl)

1/7r
−3/7
n , a

feasible version of which can be constructed by replacing Bkl and Vkl with preliminary estimators

thereof.
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4 Examples

4.1 Maximum Score

To describe a version of the maximum score estimator of Manski (1975, 1985), suppose z1, . . . , zn

is a random sample of z = (y,x′)′ generated by the binary response model

y = 1(x′β0 + u ≥ 0), Median(u|x) = 0,

where β0 ∈ Rd+1 is an unknown parameter of interest, x ∈ Rd+1 is a vector of covariates, and u is

an unobserved error term. Following Abrevaya and Huang (2005), we employ the parameterization

β0 = (1,θ′0)
′, where θ0 ∈ Rd is unknown. In other words, we assume that the first element of β0 is

positive and then normalize the (unidentified) scale of β0 by setting its first element equal to unity.

Partitioning x conformably with β0 as x = (x1,x
′
2)
′, a maximum score estimator of θ0 is any θ̂

MS

n

approximately maximizing M̂n for mn(z,θ) = mMS(z,θ) = (2y − 1)1(x1 + x′2θ ≥ 0).

Regarded as a member of the class of M -estimators exhibiting cube root asymptotics, the

maximum score estimator is representative in a couple of respects. First, under easy-to-interpret

primitive conditions the estimator is covered by the results of Section 3. Second, in addition to

the generic estimator H̃ND
n discussed above, the maximum score estimator admits example-specific

consistent estimators of the H0 associated with it.

Under standard regularity conditions (stated in Section A.2 of the supplemental appendix),

Condition CRA is satisfied with qn = 1,

H0 = HMS = 2E[fu|x1,x2(0| − x′2θ0,x2)fx1|x2(−x′2θ0|x2)x2x′2],

and

C0(s, t) = CMS(s, t) = E[fx1|x2(−x′2θ0|x2) min{|x′2s|, |x′2t|}1(sgn(x′2s) = sgn(x′2t))],

where fa|b denotes the conditional Lebesgue density of a given b. As a consequence, Theorem

1 is applicable to θ̂
MS

n and the consistency requirement H̃n →P HMS is satisfied by the numerical

derivative estimator discussed in Section 3.1 if εn → 0 and nε3n →∞. Under the additional regularity

conditions of Lemma 2, MSE-optimal tuning parameter choices are feasible. In addition, alternative

consistent estimators of HMS can be constructed exploiting the specific structure of this example.

One option is to employ a “plug-in”estimator of HMS based on nonparametric estimators of fu|x1,x2
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and fx1|x2 . An alternative, example-specific estimator is

H̃MS
n = − 1

n

n∑
i=1

(2yi − 1)K̇n(x1i + x′2iθ̂
MS

n )x2ix
′
2i,

where, for a differentiable kernel function K and a positive bandwidth hn, K̇n(u) = dKn(u)/du

and Kn(u) = K(u/hn)/hn. In words, H̃MS
n is constructed by “smoothing out”the indicator function

entering mMS(z,θ) and then twice differentiating the corresponding objective function (previously

used by Horowitz, 1992).

4.2 Panel Maximum Score

Consider the panel data binary response model

Yt = 1(X′tβ0 + α+ ut ≥ 0), t = 1, 2,

where β0 ∈ Rd+1 is an unknown parameter of interest, α is an unobserved (time-invariant)

individual-specific effect, and ut is an unobserved error term. Analyzing this model, Manski (1987)

gave conditions under which β0 is identified up to scale and demonstrated consistency of a condi-

tional maximum score estimator.

Suppose β0 is identified up to scale and that its first element is positive, in which case we can

normalize that element to unity and employ the parameterization β0 = (1,θ′0)
′, where θ0 ∈ Rd

is unknown. To describe a version of the estimator of Manski (1987), partition Xt conformably

with β0 as Xt = (X1t,X
′
2t)
′ and define z = (y, x1,x

′
2)
′, where y = Y2 − Y1, x1 = X12 −X11, and

x2 = (X22−X21). Assuming z1, . . . , zn is a random sample of z, a panel maximum score estimator

of θ0 is any θ̂
PMS

n approximately maximizing M̂n for mn(z,θ) = mPMS(z,θ) = y1(x1 + x′2θ ≥ 0).

As one would expect, the properties of θ̂
PMS

n are qualitatively similar to those of θ̂
MS

n . To be

specific, under regularity conditions (stated in Section A.3 of the supplemental appendix), the

panel maximum score estimator is covered by the results of Section 3 and an example-specific

alternative to the generic numerical derivative estimator is available, namely

H̃PMS
n = −n−1

n∑
i=1

yiK̇n(x1i + x′2iθ̂
PMS

n )x2ix
′
2i,

where K̇n is as in the maximum score example.
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4.3 Conditional Maximum Score

Consider the dynamic panel data binary response model

Yt = 1(X′tβ0 + Yt−1γ0 + α+ ut ≥ 0), t = 1, 2, 3,

where β0 ∈ Rd and γ0 ∈ R are unknown parameters of interest, α is an unobserved (time-invariant)

individual-specific effect, and ut is an unobserved error term. Honoré and Kyriazidou (2000) ana-

lyzed this model and gave conditions under which β0 and γ0 are identified up to a common scale

factor. Assuming these conditions hold and that the first element of β0 is positive, we can normal-

ize that element to unity and employ the parameterization (β′0, γ0)
′ = (1,θ′0)

′, where θ0 ∈ Rd is

unknown.

To describe a version of the conditional maximum score estimator of Honoré and Kyriazidou

(2000), partition Xt after the first element as Xt = (X1t,X
′
2t)
′ and define z = (y, x1,x

′
2,w

′)′, where

y = Y2−Y1, x1 = X12−X11, x2 = ((X22−X21)
′, Y3−Y0)′, and w = X2−X3. Assuming z1, . . . , zn

is a random sample of z, a conditional maximum score estimator of θ0 is any θ̂
CMS

n approximately

maximizing M̂n for mn(z,θ) = mCMS
n (z,θ) = y1(x1 + x′2θ ≥ 0)κn(w), where κn(w) = κ(w/bn)/bdn

for a kernel function κ and a bandwidth bn.

Through its dependence on bn, the function mCMS
n depends on n in a non-negligible way. In

particular, the effective sample size is nbdn (rather than n) in the current setting, so to the extent

that they exist one would expect primitive suffi cient conditions for Condition CRA to include

qn = bdn in this example. Apart from this predictable change, the properties of the conditional

maximum score estimator θ̂
CMS

n turn out to be qualitatively similar to those of θ̂
MS

n . To be specific,

under regularity conditions (stated in Section A.4 of the supplemental appendix), the conditional

maximum score estimator is covered by the results of Section 3 and an example-specific alternative

to the generic numerical derivative estimator is available, namely

H̃CMS
n = −n−1

n∑
i=1

yiK̇n(x1i + x′2iθ̂
CMS

n )x2ix
′
2iκn(wi),

where K̇n is as in the maximum score example.

4.4 Empirical Risk Minimization

Mohammadi and van de Geer (2005) considered two-category classification problems in machine
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learning. Specifically, given a binary outcome y ∈ {−1, 1} and a vector of features x ∈ X , the goal

is to estimate the θ0 that minimizes the misclassification error (or risk) P[hθ(x) 6= y] with respect

to θ ∈ Θ ⊆ Rd, where {hθ : θ ∈ Θ} is a collection of classifiers. For simplicity, we consider the

case where the feature is univariate with support X = [0, 1] and the classifiers are of the form

hθ(x) =

d+1∑
`=1

(−1)`1(θ`−1 ≤ x < θ`), θ = (θ1, θ2, · · · , θd)′,

where Θ = {(θ1, θ2, · · · , θd)′ ∈ [0, 1]d : 0 = θ0 ≤ θ1 ≤ · · · ≤ θd ≤ θd+1 = 1}.

Assuming z1, . . . , zn is a random sample of z, an empirical risk minimizer is any θ̂
ERM

n approx-

imately maximizing M̂n for mn(z,θ) = mERM(z,θ) = −1(hθ(x) 6= y). Under regularity conditions

similar to those of Mohammadi and van de Geer (2005, Section 2.1), the empirical risk minimizer

is covered by Theorem 1 and the consistency requirement on H̃n can be met in various ways; for

details, see Section A.5 of the supplemental appendix.

5 Simulations

We illustrate the numerical performance of our proposed bootstrap-based inference methods for the

maximum score estimator. Given the setup in Section 4.1, we generate data from that model with

d = 1, θ0 = 1, x = (x1, x2)
′ ∼ N ((0, 1)′, I2) with I2 the (2 × 2) identity matrix, and u generated

by three distinct distributions. Specifically, DGP 1 sets u ∼ Logistic(0, 1)/
√

2π2/3, DGP 2 sets

u ∼ T3/
√

3, where T3 denotes a Student’s t-distribution with 3 degrees of freedom, and DGP 3 sets

u ∼ (1 + 2(x1 + x2)
2 + (x1 + x2)

4)Logistic(0, 1)/
√
π2/48.

The Monte Carlo experiment employs a sample size n = 1, 000 with B = 2, 000 bootstrap

replications and S = 2, 000 simulations. For each of the three DGPs, we implement the standard

non-parametric bootstrap, the m-out-of-n bootstrap using m ∈ {
⌈
n1/2

⌉
,
⌈
n2/3

⌉
,
⌈
n4/5

⌉
}, and our

proposed method using the two estimators H̃MS
n and H̃ND

n of H0. We report empirical coverage for

nominal 95% confidence intervals and their average interval length. For the case of our proposed

procedures, we investigate their performance using (i) infeasible (simulation-based) MSE-optimal

choices of tuning parameters (bandwidth/derivative step), denoted by hMSE and εMSE, and (ii) infea-

sible and feasible AMSE-optimal choices of the tuning parameters, denoted by hAMSE, ĥAMSE, εAMSE

and ε̂AMSE; for details, see Section A.2 of the supplemental appendix.
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Table 1: Simulations, Maximum Score Estimator, 95% Confidence Intervals.

DGP 1 DGP 2 DGP 3
h, ε Coverage Length h, ε Coverage Length h, ε Coverage Length

Standard
0.625 0.472 0.647 0.475 0.654 0.243

m-out-of-n
m = dn1/2e 0.997 1.698 0.998 1.753 1.000 1.890

m = dn2/3e 0.978 1.185 0.983 1.221 0.989 0.724

m = dn4/5e 0.899 0.820 0.897 0.837 0.930 0.447

Plug-in: H̃MS
n

hMSE 0.620 0.954 0.511 0.580 0.957 0.523 0.150 0.962 0.277

hAMSE 1.108 0.972 0.590 0.480 0.951 0.518 0.123 0.942 0.263

ĥAMSE 0.443 0.940 0.508 0.409 0.946 0.518 0.155 0.957 0.278

Num Deriv: H̃ND
n

εMSE 1.400 0.936 0.483 1.360 0.938 0.485 0.290 0.939 0.249

εAMSE 0.537 0.880 0.414 0.573 0.894 0.426 0.224 0.902 0.227

ε̂AMSE 0.518 0.876 0.413 0.512 0.882 0.420 0.369 0.947 0.270
Notes:
(i) Panel Standard refers to standard nonparametric bootstrap, Panelm-out-of-n refers to m-out-of-n nonparamet-
ric bootstrap with subsample size m, Panel Plug-in: H̃MS

n refers to our proposed bootstrap-based implemented using
the example-specific plug-in drift estimator, and Panel Num Deriv: H̃ND

n refers to our proposed bootstrap-based
implemented using the generic numerical derivative drift estimator.
(ii) Column “h, ε”reports tuning parameter value used or average across simulations when estimated, and Columns
“Coverage”and “Length”report empirical coverage and average length of bootstrap-based 95% percentile confidence
intervals, respectively.
(iii) hMSE and εMSE correspond to the simulation MSE-optimal choices, hAMSE and εAMSE correspond to the AMSE-optimal
choices, and ĥAMSE and ε̂AMSE correspond to the ROT feasible implementation of ĥAMSE and ε̂AMSE described in the
supplemental appendix.

Table 1 presents the main results, which are consistent across all three simulation designs. First,

as expected, the standard nonparametric bootstrap (labeled “Standard”) does not perform well,

leading to confidence intervals with an average 64% empirical coverage rate. Second, the m-out-of-

n bootstrap (labeled “m-out-of-n”) performs somewhat better for small subsamples, but leads to

very large average interval length of the resulting confidence intervals. Our proposed methods, on

the other hand, exhibit good finite sample performance in this Monte Carlo experiment. Results

employing the example-specific plug-in estimator H̃MS
n are presented under the label “Plug-in”while

results employing the generic numerical derivative estimator H̃ND
n are reported under the label “Num

Deriv”. Empirical coverage appears stable across different values of the tuning parameters for each

method, with better performance in the case of H̃MS
n . We conjecture that n = 1, 000 is too small for

the numerical derivative estimator H̃ND
n to lead to as good inference performance as H̃MS

n (e.g., note

that the MSE-optimal choice εMSE is greater than 1). Nevertheless, empirical coverage of confidence
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intervals constructed using our proposed bootstrap-based method is close to 95% in all cases except

when H̃ND
n is used with either the infeasible asymptotic choice εAMSE or its estimated counterpart

ε̂AMSE, and with an average interval length of at most half that of any of the m-out-of-n competing

confidence intervals. In particular, confidence intervals based on H̃MS
n implemented with the feasible

bandwidth ĥAMSE perform quite well across the three DGPs considered.

6 Conclusion

We developed a valid resampling procedure for cube root asymptotics based on the nonparametric

bootstrap. Whereas the standard nonparametric bootstrap is known to be invalid in the setting we

study, we show that bootstrap validity can be restored by applying a carefully tailored reshapement

of the objective function defining the estimator. Such reshapement is easy to implement both in

general and in specific cases, as illustrated by the distinct examples we considered.

Seo and Otsu (2018) gave conditions under which results of the form (9) can be obtained also

when the data exhibits weak dependence; see also Bagchi, Banerjee, and Stoev (2016), and refer-

ences therein. It seems plausible that a version of our procedure, implemented with a resampling

procedure suitable for dependent data, can be shown to be consistent under similar conditions, but

it is beyond the scope of this paper to substantiate that conjecture.

7 Proof of Theorem 1

The proof proceeds by first showing (9) and then using that result to establish (10). In both cases,

we employ arguments similar to those used in the proof of the main theorem of Kim and Pollard

(1990). The remainder of this section outlines the main steps in the proof; for technical details, see

Lemmas A.1-A.10 in Section A.1 of the supplemental appendix.

Proof of (9). The estimator θ̂n is assumed to satisfy

{Ĝn(s) +Qn(s)}
∣∣∣
s=rn(θ̂n−θ0)

≥ sup
s∈Rd
{Ĝn(s) +Qn(s)}+ oP(1),
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where

Ĝn(s) = r2n[M̂n(θ0 + sr−1n )− M̂n(θ0)−Mn(θ0 + sr−1n ) +Mn(θ0)]1(θ0 + sr−1n ∈ Θ)

and

Qn(s) = r2n[Mn(θ0 + sr−1n )−Mn(θ0)]1(θ0 + sr−1n ∈ Θ).

By the argmax continuous mapping theorem (e.g., van der Vaart and Wellner, 1996, Theorem

3.2.2), it therefore suffi ces to show that rn(θ̂n − θ0) = OP(1) and that Ĝn + Qn  G0 + Q0 in

the topology of uniform convergence on compacta. (The other conditions required by the argmax

continuous mapping theorem are easily verified.)

To obtain the rate of convergence of θ̂n, we begin by using a standard argument to show that

θ̂n−θ0 = oP(1) under Condition CRA(i) and then strengthen that conclusion to rn(θ̂n−θ0) = OP(1)

by using Conditions CRA(ii)-(iii) and proceeding along the lines of van der Vaart and Wellner (1996,

Theorem 3.2.5). In both cases, we employ the maximal inequality in Pollard (1989, Theorem 4.2);

for details, see Lemmas A.1 and A.3 of the supplemental appendix.

Next, because Qn is non-random, Ĝn+Qn  G0+Q0 in the topology of uniform convergence on

compacta if Qn converges compactly to Q0 and if Ĝn  G0 in the topology of uniform convergence

on compacta. Compact convergence of Qn follows from Condition CRA (ii); for details, see Lemma

A.2 of the supplemental appendix. Also, to show that Ĝn  G0 in the topology of uniform conver-

gence on compacta, it suffi ces to show that Ĝn converges to G0 in the sense of weak convergence

of finite-dimensional projections and that {Ĝn(s) : ||s|| ≤ K} is stochastically equicontinuous for

every K > 0.

Under Conditions CRA(ii)-(iv), weak convergence of finite-dimensional projections can be shown

using the Cramér-Wold device and the fact that E[Ĝn(s)Ĝn(t))] converges to C0(s, t) for every

s, t ∈ Rd; for details, see Lemma A.4 of the supplemental appendix. Finally, under Conditions

CRA(iii) and CRA(v) and employing the maximal inequality in Pollard (1989, Theorem 4.2),

stochastic equicontinuity can be shown by proceeding as in the proof of Kim and Pollard (1990,

Lemma 4.6); for details, see Lemma A.5 of the supplemental appendix.

Proof of (10). The proof of (10) is a natural bootstrap analog of the proof of (9). The estimator
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θ̃
∗
n is assumed to satisfy

{G̃∗n(s) + Q̃n(s)}
∣∣∣
s=rn(θ̃

∗
n−θ̂n)

≥ sup
s∈Rd
{G̃∗n(s) + Q̃n(s)}+ oP(1),

where

G̃∗n(s) = r2n[M̃∗n(θ̂n + sr−1n )− M̃∗n(θ̂n)− M̃n(θ̂n + sr−1n ) + M̃∗n(θ̂n)]1(θ̂n + sr−1n ∈ Θ)

and

Q̃n(s) = r2n[M̃n(θ̂n + sr−1n )− M̃n(θ̂n)]1(θ̂n + sr−1n ∈ Θ) = −1

2
s′H̃ns1(θ̂n + sr−1n ∈ Θ).

By the argmax continuous mapping theorem, it therefore suffi ces to show that rn(θ̃
∗
n− θ̂n) = OP(1)

and that G̃∗n + Q̃n  P G0 +Q0 in the topology of uniform convergence on compacta.

Using H̃n →P H0, to obtain the rate of convergence of θ̃
∗
n we first show that θ̃

∗
n − θ̂n = oP(1)

under Condition CRA(i) and then strengthen that conclusion to rn(θ̃
∗
n − θ̂n) = OP(1) by using

rn(θ̂n − θ0) = OP(1) and Condition CRA(iii). As in the derivation of the convergence rate of θ̂n,

both steps employ the maximal inequality in Pollard (1989, Theorem 4.2); for details, see Lemmas

A.6 and A.8 of the supplemental appendix.

Next, because Q0 is non-random, G̃∗n + Q̃n  P G0 +Q0 in the topology of uniform convergence

on compacta if Q̃n →P Q0 in the topology of uniform convergence on compacta and if Ĝn  G0 in

the topology of uniform convergence on compacta. By construction, Q̃n is such that if H̃n →P H0

and if θ̂n →P θ0 ∈ int(Θ), then Q̃n →P Q0 in the topology of uniform convergence on compacta;

for details, see Lemma A.7 of the supplemental appendix.

Also, to show that G̃∗n  P G0 in the topology of uniform convergence on compacta, it suffi ces

to show that G̃n converges to G0 in the sense of conditional weak convergence in probability of

finite-dimensional projections and that {G̃∗n(s) : ||s|| ≤ K} is stochastically equicontinuous for

every K > 0. Conditional weak convergence in probability of finite-dimensional projections can be

shown using the Cramér-Wold device and the fact that the maximal inequality in Pollard (1989,

Theorem 4.2) can be used to show that E∗n[G̃∗n(s)G̃∗n(t))] converges in probability to C0(s, t) for every

s, t ∈ Rd, where E∗n denotes an expectation computed under the bootstrap distribution conditional
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on the data; for details, see Lemma A.9 of the supplemental appendix. Finally, employing the

maximal inequality in Pollard (1989, Theorem 4.2), stochastic equicontinuity can be shown by

proceeding as in the proof of Kim and Pollard (1990, Lemma 4.6); for details, see Lemma A.10 of

the supplemental appendix.
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