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Abstract

I develop a new identification strategy for treatment effects when noisy measurements of un-

observed confounding factors are available. I use proxy variables to construct a random variable

conditional on which treatment variables become exogenous. I show that, under appropriate

conditions, there exists a one-to-one mapping between the distribution of unobserved confound-

ing factors and the distribution of proxies, which in turn implies that holding constant the proxy

distribution controls for the unobserved confounding factors. To ensure sufficient variation in

the constructed control variable, I use an additional variable, termed excluded variable, which

satisfies certain exclusion restrictions and relevance conditions. I establish asymptotic distri-

butional results for semiparametric and flexible parametric estimators of causal parameters. I

illustrate empirical relevance and usefulness of my results by estimating causal effects of grade

retention on academic performance.
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1 Introduction

In attempts to identify causal effects, researchers often exploit known treatment assignment rules.

For instance, in some U.S. school districts, grade retention decisions are some function of standard-

ized test scores. Economists have exploited such institutional feature to estimate causal effects of

grade retention on various outcomes. In these settings, the success of treatment effect estimation

relies on not only detailed knowledge of treatment assignment rules but also precise measures of

characteristics used for treatment allocation. However, it is often difficult to have access to the

exact variables used to determine treatment status due to data availability. Another such example

arises in studying college admissions, where researchers rarely observe admission scores used by

universities. In this paper, I develop a new identification strategy to address this type of empirical

challenges. Specifically, I assume availability of proxy variables for unobserved variables that deter-

mine treatment status and devise a control function method to identify treatment effects. This new

approach has a wide range of applications since coarse measurements of covariates are prevalent in

practice (e.g., Gillen et al., 2019).

In its simplest form, the identification problem of interest is captured in the model

Y = β0 + β1D + β2X
∗ + ϵ, E[ϵ(D,X∗)T] = 0,

= β0 + β1D + β2X + ε, E[(X∗ −X)(D,X∗, ϵ)T] = 0,

where ε = ϵ + β2(X
∗ − X), D is the treatment of interest, X∗ is the variable used for treatment

assignment (unobserved to econometricians), andX is a proxy variable forX∗. IfX∗ were observed,

one would estimate the equation Y = β0 + β1D + β2X
∗ + ϵ. However, the regression with X∗ is

infeasible, and the regression estimate using X in place of X∗ is generally inconsistent for the

treatment effect β1. A textbook solution to this problem is to use a repeated measurement as an

instrumental variable (IV) for X. Denoting the second measurement of X∗ by Z, the two-stage

least squares (2SLS) method is equivalent to estimating

Y = β0 + β1D + β2X̂ + ε, E[ε(D,Z)T] = 0 (1)

where X̂ is the linear projection of X on D,Z i.e., fitted value from the first-stage regression
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X = γ0 + γ1D + γ2Z + ν. Here X̂ plays the role of a control function (Heckman and Robb, 1985);

see Matzkin (2007, p.5356) for a definition of control functions.1

The main contribution of this paper is to extend the above control function method to non-

separable models, including general nonparametric models. Specifically, I show that under appro-

priate assumptions, a vector V whose components take the form E[g(X)|D,Z] for some function

g is a valid control function in the sense that the treatment variable becomes conditionally inde-

pendent of unobserved confounding factors given V . This is a natural extension of (1) since my

identification approach controls for general forms of fitted values relative to the 2SLS method. Ac-

commodating non-separable models is especially important for treatment effect estimation because

the linear model (1) imposes constant treatment effects, and as well-documented in the literature,

ignoring treatment effect heterogeneity may produce misleading estimates.

The control function approach may be particularly appealing to applied researchers for its sim-

plicity: the estimation procedure boils down to running regressions and computing sample averages.

To facilitate implementation of the new control function method, I discuss semiparametric/flexible

parametric modelling of the outcome equation, leveraging existing results in the control function

literature. In addition, I develop a Lasso-based estimation procedure to flexibly choose regression

specifications, building on Chernozhukov et al. (2022). With cross-validation, it is easy to choose

Lasso tuning parameters, and I provide a closed-form variance estimator. I characterize a set of

sufficient conditions for
√
n-consistency and asymptotic normality of the proposed estimator as well

as consistency of the variance estimator.

Relation to existing literature The main alternatives to my control function approach are the

integral equation approach of Deaner (2018); Miao et al. (2018) and the operator diagonalization

method of Hu and Schennach (2008). See Deaner (2022) for comparison of these two methods in

the context of treatment effect estimation with measurement errors in covariates.

My identifying assumptions greatly overlap with those of the integral equation approach, yet

there are some key differences in the identifying assumptions. In the integral equation approach,

one imposes a high-level condition to ensure the existence of a solution to an integral equation,

1Here I take the perspective of control function rather than IV because the control function approach extends to
non-linear settings naturally whereas IV counterparts face some difficulties (Blundell and Powell, 2003). For instance,
nonparametric IV methods do not identify causal effects unless the unobserved heterogeneity is additively separable.
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which I argue is difficult to verify except special cases. On the other hand, I instead impose a

common support condition/overlap condition, which can be restrictive in practice but it can be

empirically tested. I show in the supplemental appendix that with a similar high-level condition,

my method yields an identification result analogous to the integral equation approach, and thus,

this high-level condition is a key difference between the two approaches.

Hu and Schennach (2008) pioneered the use of completeness conditions in nonparametric mea-

surement error models and their methods have been successfully applied beyond measurement error

contexts (e.g., Arellano et al., 2017; Sasaki, 2015). Building on their idea, I also use a completeness

condition to formalize the notion of a proxy variable. The conditional independence restrictions of

the two approaches are different (Deaner, 2022), and thus, my result can complement the operator

diagonalization method. Whereas Hu and Schennach (2008) identifies a larger class of parameters

than my approach (e.g., the distribution of unobserved X∗), my control function method may be

appealing to practitioners as estimation boils down to running regressions and computing sample

averages.

This paper also contributes to the extensive literature on control functions (for reviews, see

Blundell and Powell, 2003; Matzkin, 2007; Wooldridge, 2015) by proposing a novel construction

of control functions. Many existing results construct a control variable from IV, whereas I use

proxy variables. Since the identifying assumptions are quite different, the new result in this paper

complements existing results by expanding the scope of applicability of control function methods.

Many existing approaches use the invertibility of the first-stage equation to construct a control

function, and this feature excludes the case of multi-dimensional unobserved heterogeneity with a

scalar treatment variable. Provided that appropriate proxies are available, my method allows for

multiple unobserved heterogeneity and does not require the invertibility of the first-stage equation.

This aspect is practically relevant as imposing the scalar restriction on unobserved confounding

factors may not be appealing in some settings. The requirement of first-stage invertibility also

leads to a drawback that the existing methods have difficulty handling discrete endogenous variables

(Wooldridge, 2015). My method is applicable to both discrete and continuous endogenous variables.

One limitation I should note is that, similar to existing control function methods, my approach

imposes possibly restrictive common support conditions, but I discuss how additional structures on

the outcome equation can relax the common support condition.
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I motivate my identification strategy as a generalization of 2SLS estimation using repeated mea-

surements. While existing literature on non-linear models with measurement errors is extensive (for

a review, see Schennach, 2020, and references therein), my approach is distinct from deconvolution

methods. Also, Battistin and Chesher (2014) considered measurement error problems in covariates

under small measurement error variance asymptotitcs.

Roadmap and notation In the next section, I describe the econometric model and present the

identification results. Semiparametric and flexible parametric estimation methods are developed in

Section 3, and I apply the results of this paper to estimating causal effects of grade retention on

academic performance in Section 4. Section 5 concludes.

Let A,B be random variables. fA,B denotes a density of (A,B) with respect to some dominating

measure, fA|B is the conditional density of A given B, supp(A) denotes the support of A, and

supp(A|B = b) is the support of the conditional distribution of A given B = b. ⊥⊥ denotes

statistical independence and A ⊥⊥ B|C means conditional independence between A and B given a

random variable C.

2 Econometric model and identification results

Y (d), d ∈ {0, 1}, denotes the potential outcome when treatment status is set equal to d (1 indicates

treated and 0 otherwise), and D is the realized treatment status. I assume that the observed

outcome Y satisfies Y = DY (1) + (1 − D)Y (0). For simplicity, I focus on the binary treatment,

but an extension to multi-valued treatment is straightforward. In settings considered below, the

treatment allocation is a function of X∗ and other idiosyncratic shocks. If X∗ also affects the

potential outcomes, then X∗ is a confounding factor, and it is crucial to control for X∗ in order

to identify treatment effects. The main econometric challenge I focus on is that researchers may

not observe X∗ and instead they have a proxy variable X for X∗. For the identification strategy

developed below, I rely on an additional variable that is similar to a repeated measurement in (1),

denoted by Z. Since Z need not be a repeated measurement in my framework, I call Z an excluded

variable, and precise assumptions on Z will be discussed below. For notational simplicity, I do

not introduce covariates without measurement errors, but the identification analysis below goes
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through conditional on additional control variables.

To ground discussion on concrete terms, I use estimating causal effects of grade retention on

future test scores as a running example (e.g., Fruehwirth et al., 2016; Schwerdt et al., 2017).

Example. The treatment of interest D is grade retention at a specific grade, say 1st grade, and

the outcome of interest Y is a test score at a later stage e.g., one year later. By construction,

retained students will be in a different grade from the control group, and we focus on comparing

outcomes holding age constant. In this context, outcome measures are usually designed to allow

for different-grade comparison. See the studies cited above for discussion on this point.

In the education economics literature, previous studies have exploited features of formal reten-

tion policies to identify causal effects. Most commonly, a grade retention policy stipulates that

students whose standardized test scores fall below a cutoff will be retained at the current grade.

That is, D = 1{score < cutoff}. For my identification strategy, I view the test score as a noisy

measure of the underlying cognitive ability: D = 1{X∗+η < 0} where X∗ is (normalized) cognitive

ability at the time of assessment and η is a “measurement error” in the standardized test score.

Failure to control for X∗ is likely to cause bias in treatment effect estimation because X∗ affects

Y , test performance one year later. Identification is challenging as researchers do not observe X∗.

With access to standardized test scores used for grade retention decision, one can employ regression

discontinuity designs and related strategies for identification. Here, I focus on the challenging case

in which researchers do not have access to the test scores.

I assume that researchers observe noisy measures of cognitive ability: X denotes scores from

tests that are administered independently of the standardized test used to determine grade reten-

tion. Z may represent parental investments in child’s human capital (e.g., the number of books

a student has at home) that affect test performance only indirectly through ability X∗. I further

elaborate on requirements for Z below. Additional covariates such as observed student characteris-

tics (e.g., household income) and pre-retention classroom variables (e.g., qualification of classroom

teacher) may be used as additional controls, but I make them implicit for exposition. □

In this example, the treatment assignment is determined by a threshold rule. I emphasize that my

identification strategy is not specific to this type of structure, and it is applicable to more general

treatment assignment rules. For instance, suppose researchers have information on what variables
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(which may not be observed) are used for treatment allocation but might not have detailed knowl-

edge on the functional form of the treatment assignment rule, and in this context, my identification

strategy remains applicable as long as researchers have noisy measures of the key variables.

Parameters of interest include the average treatment effect (ATE) and the average treatment

effect on the treated (ATT)

ATE = E[Y (1)− Y (0)], ATT = E[Y (1)− Y (0)|D = 1].

In the above example, the ATE represents the average effect of grade retention on future test scores,

and the ATT focuses on the subpopulation of actually retained students. Given the nature of the

intervention, grade retention may not be relevant for high-performing students, and thus, the ATT

may be of direct interest in the context of grade retention.

As studied in the literature, other distributional features of the potential outcomes may be of

interest e.g., the quantile and distributional structural functions. Also, one can consider conditional

versions of the above objects e.g., average treatment effects conditional on student demographics.

Using my approach, these objects are identifiable under similar assumptions that identify the

ATE/ATT. As the identification arguments remain essentially identical, I focus on the average

effects.

2.1 Identification result

For identification, I impose the following conditional independence restrictions.

Assumption 1. For d ∈ {0, 1}, Y (d) ⊥⊥ (D,Z)|X∗.

Assumption 2. X ⊥⊥ (D,Z)|X∗.

Assumption 1 is implied by Y (d) ⊥⊥ D|X∗ and Y (d) ⊥⊥ Z|D,X∗. The first part states that

once conditional on X∗, the treatment variable becomes exogenous i.e., X∗ represents confounding

factors. The other condition Y (d) ⊥⊥ Z|D,X∗ states that Z satisfies an exclusion restriction

in the sense that Z does not affect the outcome given the treatment and confounding factors.

This exclusion restriction on Z is distinct from the standard IV exclusion restriction because the

restriction needs to hold only conditional on X∗. Excluded variables Z are allowed to be correlated
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with the unobserved confounding factors, which is not the case for IVs.

Assumption 2 states that given the “correctly measured” variable, its noisy measurement is

independent of other variables. This type of restriction is common in the measurement error

literature (e.g., Assumption 2 in Hu and Schennach, 2008). As a visual aid to understanding

Assumptions 1-2, in Figure 1, I present directed acyclical graphs that are compatible with the

imposed conditional independence restrictions.

To assess the plausibility of the conditional independence restrictions in empirical settings, it is

important to specify some elements of the treatment assignment mechanism. I illustrate this point

using the grade retention example.

Example (continued). The treatment assignment follows an explicit rule D = 1{X∗ + η < 0}

where X∗ is cognitive ability, and η is a measurement error in the standardized test score as noted

above. In this context, Y (d) ⊥⊥ D|X∗ (part of Assumption 1) requires that the measurement error

η be orthogonal to the test performance one year later, conditional on the cognitive ability at the

time of the assessment for grade retention. Viewing η as an idiosyncratic shock, the assumption

seems reasonable, especially because we condition on cognitive ability X∗. Similarly, the restriction

X ⊥⊥ (D,Z)|X∗ (Assumption 2) holds under the orthogonality of measurement errors i.e., X −X∗

is independent of (η, Z) conditional on X∗.

The remaining part of Assumption 1 requires Y (d) ⊥⊥ Z|D,X∗, where Z represents parental

investment in child’s human capital. The rationale for this conditional independence restriction is

that parental investment affects test performance only though its effects on child’s ability. X∗ is

the cognitive ability at the time of test taking for grade retention decision, and Z denotes parental

investment at the time period well before the test e.g., several months before. As in the model

of Cunha et al. (2010), one can view parental investment Z as only an input to X∗, and once

conditional on X∗, Z does not affect future test performance. □

Regarding Assumption 1, it is important that X∗ captures all the sources of endogeneity. For

example, if a grade retention decision is additionally based on teacher’s assessment of student

maturity, one may formulate the grade retention decision as

D = 1{academic test score < cutoff} ∪ {maturity score < maturity cutoff}
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where “maturity score” is teacher’s evaluation of student’s maturity level, which may not be ob-

served by researchers. In this setting, X∗ is a two-dimensional vector consisting of cognitive ability

and personality traits (non-cognitive skills). If non-cognitive skills also affect the outcome of inter-

est, it is important to expand X∗ to include such characteristics.

Once researchers specify the elements of X∗, they need to identify proxy variables X that

provide information about X∗. To formalize this idea, I follow Hu and Schennach (2008) and the

subsequent literature using completeness conditions.

Assumption 3. For any real-valued function b with E[b(X∗)2] <∞, the distribution FXX∗ satisfies

E[b(X∗)|X] = 0 FX-almost surely implies b(X∗) = 0 FX∗-almost surely.

This condition is the L2-completeness of the conditional distributions of X∗ given X. Completeness

conditions can be thought of as a nonparametric generalization of the IV rank condition in linear

models (Newey and Powell, 2003). Since this is a rank condition, the dimension of X should be at

least as large as that of X∗ in general. In the literature, there are several known sufficient conditions

for completeness (e.g., Andrews, 2017; D’Haultfoeuille, 2011; Hu et al., 2017). For instance, if

researchers are willing to impose the measurement error structure such as X = χ(X∗ + u) where χ

is invertible andX∗ ⊥⊥ u, then primitive sufficient conditions for completeness exist (see Lemma SA-

4 in the appendix). In a panel data setting, Wilhelm (2015) discussed justifications for completeness

assumptions using past observations as proxies. In the grade retention application, test scores are

a strong indicator of underlying ability, and the rank condition seems reasonable.

The last substantive assumption is a version of overlap conditions.

Assumption 4. Let X = supp(X) and V = {fX|DZ(x|D,Z) : x ∈ X}. When the parameter of

interest is ATE, 0 < P[D = 1|V] < 1 with probability one. When the parameter of interest is ATT,

P[D = 1|V] < 1 with probability one.

As Theorem 1 below states, under Assumptions 1-3 and regularity conditions, the treatment as-

signment becomes exogenous conditional on V: Y (d) ⊥⊥ D|V. To identify treatment effects using

this result, one needs to be able to vary D while holding constant V. Since V is a function of D,

this is possible only if the excluded variable Z can “undo” the effect of D on V, and this is the
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content of Assumption 4. This assumption differs from the standard overlap condition in that the

propensity score is conditional on the stochastic process V = {fX|DZ(x|D,Z) : x ∈ X}. In the

sequel, particularly in Section 3, I discuss how to estimate conditional expectations given V under

suitable assumptions on the data generating process.

Heuristically, Assumption 4 holds if for each z in Z = supp(Z), there is z′ such that

fX|D,Z(X|1, z) = fX|D,Z(X|0, z′) (2)

with probability one.2 As an example satisfying (2), consider the following model, which is con-

sistent with the grade retention example. D = 1{X∗ + η < 0} where η is a random variable

independent of (X∗, Z) following the standard logistic distribution, and the conditional distribu-

tion of X∗ given Z belongs to an exponential family fX∗|Z(x
∗|z) = exp(θ(z)x∗+A(z))h(x∗). Then,

fX∗|DZ(x
∗|d, z) equals

P[D = d|X∗ = x∗, Z = z]
fX∗|Z(x

∗|z)
P[D = d|Z = z]

=
exp((1− d)x∗)

1 + exp(x∗)

exp(θ(z)x∗ +A(z))h(x∗)

P[D = d|Z = z]

and
fX∗|DZ(x

∗|1, z)
fX∗|DZ(x∗|0, z′)

∝ exp
(
(θ(z)− θ(z′)− 1)x∗

)
so in this model, the overlap condition holds if for each z ∈ Z, there exists z′ ∈ Z such that θ(z) =

θ(z′) + 1.3 This example indicates that the overlap condition fails if the conditional distribution

of X∗ given Z = z does not vary with z i.e., θ(z) is constant in z. In general, for the overlap

condition to hold, the excluded variable should affect either D or X∗ i.e., P[D = 1|X∗, Z] or fX∗|Z

is a non-trivial function of Z.

For (2) to hold, it is essentially necessary for the conditional distribution to satisfy index re-

strictions: there exist some functions ψ and f such that

fX|DZ(x|d, z) = f(x, ψ(d, z)) (3)

2More precisely, for each (d, z) ∈ supp(D,Z), there is z′ ∈ supp(Z|D = 1 − d) such that fX|DZ(X|d, z) =
fX|DZ(X|1− d, z′) holds with probability one.

3Under Assumption 2, (2) follows from fX∗|D,Z(X
∗|1, z) = fX∗|D,Z(X

∗|0, z′) almost surely.
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for almost all x, d, z̃ and the dimension of ψ(d, z) is at most dim(Z). This index restriction is

essentially necessary because without such structure, we can find z ∈ Z for which there is no z′ ∈ Z

satisfying (2). In the above example, the index restriction also holds with ψ(d, z) = 1 − d − θ(z)

since exp(A(z))
P[D=d|Z=z] is some function of ψ(d, z).

Another feature of the overlap condition is that it generally requires a large support of Z, a

common restriction among control function approaches (e.g., Imbens and Newey, 2009, see their

Assumption 2 and discussions following it). To see this requirement in the above example, suppose

that θ(z) = z. Then, if the support of Z is bounded, say [a, b], then for z ∈ [a, a + 1), there

is no z′ in the support of Z satisfying fX∗|D,Z(·|1, z) = fX∗|D,Z(·|0, z′). The existing work on

control function methods has recognized that the large support condition may be restrictive in

practice (e.g., Chernozhukov et al., 2020; Florens et al., 2008). In the next subsection, I build on

the insights from the literature to relax Assumption 4 by imposing additional structures on the

outcome equation.

Before stating the identification result, I state a collection of regularity conditions.

Assumption 5. E[|Y (d)|2] < ∞ for d ∈ supp(D). With Z̃ = (D,Z), the joint distribution

of (X,X∗, Z̃) is absolutely continuous with respect to the product measure λ × λ∗ × λZ̃ where

λ, λ∗, λZ̃ are σ-finite measures. E[| fXX∗ (X,X∗)
fX(X)fX∗ (X∗) |

2] < ∞ and
∫
|
fX∗|Z̃(x

∗|Z̃)
fX∗ (x∗) |2fX∗(x∗)dλ∗(x

∗) < ∞,∫
|fX|Z̃(x|Z̃)|

2dλ(x) <∞ with probability one.

Here is the main identification result of this paper. A formal proof is presented in the appendix.

Theorem 1. Suppose Assumptions 1, 2, 3, and 5 hold. Then,

Y (d) ⊥⊥ D|V

where V is viewed as a random element in the space of λ-square integrable functions with the norm

topology. In addition, if Assumption 4 holds, the ATE and ATT are identified by

ATE = E[µ(1,V)− µ(0,V)],

ATT = E[µ(1,V)− µ(0,V)|D = 1],
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where µ(D,V) = E[Y |D,V].

The statement above focuses on average effects, but as standard in the literature, other parameters

of interest such as the quantile structural function can be identified using the same argument. Also,

the theorem focuses on the binary treatment, but one can extend it to multi-valued or continuously

distributed D. For the extension, Assumptions 1-3 remain the same but Assumption 4 needs to be

modified to the condition that the conditional support of V given D equals the marginal support

of V. This is essentially the same condition as Assumption 4, and in the supplemental appendix, I

provide additional discussions on this support condition.

Conditional expectations given the stochastic process V Here I discuss computation of

conditional expectations given the stochastic process V, which is needed to use Theorem 1 for

estimation. For further discussion of estimation issues, see Section 3.

In my setting, the stochastic process V has a very specific structure that helps with compu-

tation. The sigma-field generated by V is coarser than the sigma-filed generated by (D,Z) =: Z̃.

Thus, intuitively, the effective dimension of V is at most the dimension of Z̃ and potentially smaller.

Moreover, the overlap condition (Assumption 4) essentially requires that the conditional distribu-

tion of X given Z̃ satisfies the index restriction (3). Then, a straightforward way to proceed is to

estimate ψ(D,Z) from data and use it as a control function in the outcome equation. That is, under

Assumptions 1-5 and (3), Vψ = ψ(D,Z) is a valid control function in the sense of Y (d) ⊥⊥ D|Vψ.

This is an immediate corollary of Theorem 1 as σ(Vψ) ⊇ σ(V), where σ(·) denotes the sigma-field

generated by its argument.

Maintaining the index restriction, there is an alternative strategy to compute conditional ex-

pectations given V. Let G(x) = (g1(x), . . . , gk(x))
T be a vector of FX -integrable functions. Under

(3),

E[G(X)|Z̃] =
(∫

g1(x)f(x, ψ(Z̃))dλ(x) . . .

∫
gk(x)f(x, ψ(Z̃))dλ(x)

)T

.

Since E[G(X)|Z̃] is a function of Vψ = ψ(Z̃), σ(E[G(X)|Z̃]) ⊆ σ(Vψ). On the other hand, if

f is a smooth function of its second argument, with an appropriate choice of G = (g1, . . . , gk)
T

(k ≥ dψ), the inverse function theorem implies that Vψ can be expressed as a function of E[G(X)|Z̃]

locally. By partitioning the probability space, we can turn this local result to a global one where
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conditioning on V is equivalent to conditioning on E[G(X)|Z̃]. Here is the formal assumption.

Assumption 6. There exist ψ : supp(Z̃) → Rdψ , f : supp(X,ψ(Z̃)) → [0,+∞) such that fX|Z̃(x|z̃) =

f(x, ψ(z̃)) holds for almost all x, z̃, and the distribution of Vψ = ψ(D,Z) has a Lebesgue density.

There exist square FX-integrable functions G(x) = (g1(x), . . . , gk(x))
T and a version of f in (3) such

that v 7→
∫
G(x)f(x, v)dλ(x) is continuously differentiable on supp(Vψ) and

∂
∂vT

∫
G(x)f(x, v)dλ(x)

is of column rank dψ for almost all v.

With the structure in (3) (and Assumption 2), we can think of the conditional distribution of X

given (D,Z) = (d, z) as an element in the family of distributions {f(·, θ) : θ ∈ supp(Vψ)}. The main

restriction Assumption 6 imposes is that the parameter of this distribution is locally identifiable

via the generalized method of moments using Eθ[G(X)] = 0 as the moment condition at almost all

parameter values, where Eθ is the expectation with respect to f(·, θ). This restriction seems mild.

Researchers need to choose the functions G. One candidate is power functions i.e., G(x) =

(x, . . . , xk)T, but any choice of G suffices provided that it satisfies the full rank condition in As-

sumption 6. Including more elements in G than necessary may lead to noisier estimates in a finite

sample, but it can also guard against the potential violation of the full-rank condition. Thus,

researchers may check robustness of estimation results by including additional functions to G.

Theorem 2. Let V = E[G(X)|D,Z]. Under Assumption 6, there exists a partition {Aj ∈ σ(V) :

j ∈ N} of the underlying probability space such that for Pj(·) = P(· ∩Aj),

E[Y |D,V] =
∑
j≥1

Ej [Y 1Aj |D,V ]1Aj almost surely

where conditional expectations using Pj is defined in the same way as to the case using a probability

measure.

This theorem implies that one can estimate the conditional expectation E[Y |D,V] by (nonparamet-

rically) regressing Y on (D,V ) where V is estimated in the first stage. The presence of a partition

{Aj : j ∈ N} can be handled by using a local basis approximation such as piecewise polynomi-

als. The partition is not unique, and as long as a user-chosen partition is finer than a theoretical

partition, the local approximation enables estimation. I discuss further implementation details in

Section 3.
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2.2 Semiparametric/parametric outcome equation

As previously mentioned, the overlap condition (Assumption 4) can be restrictive in applications.

Building on the control function literature, I discuss additional structures researchers can impose on

the outcome equation to relax the support condition. I should emphasize that while the modelling

technique discussed below is borrowed from the literature, my contribution is the novel construction

of the control function using a proxy variable.

In the sequel, I write V to denote either ψ(D,Z) or E[G(X)|D,Z] as both are valid control

functions under appropriate assumptions. Deviating from the grade retention example, I also

consider multi-valued/continuous D.

Random coefficient model I consider a version of the random coefficient model

Y = ε1 + ε2D, (ε1, ε2) ⊥⊥ D|X∗ (4)

with D ∈ R having more than two support points i.e., multi-valued treatment or continuously dis-

tributed variable. This model allows for heterogeneous treatment effects as the treatment variable

interacts with the unobserved heterogeneity that may be correlated with X∗. The causal parameter

of interest I consider is the average of the random slope on the treatment variable:

θ0 = E[ε2].

This parameter represents the average marginal effect of the treatment D. Under Assumptions 1-3

and 5, the model (4) yields

E[Y |D,V ] = µ1(V ) + µ2(V )D

where µ1, µ2 are unknown functions. Newey and Stouli (2021) showed that if the conditional vari-

ance of D given V = v is positive for almost all v, then θ0 is identified under regularity conditions.

This new identifying condition is substantially weaker than the common support condition: while

the common support condition demands that supp(D|V = v) equals supp(D) almost surely, the

new condition only requires supp(D|V = v) has more than one point almost surely. Therefore,

with the random coefficient specification (4), an excluded variable Z may have discrete variation

13



and one can still achieve the identification of the causal parameter θ0.
4

With a binary treatment D, the model (4) places no restrictions on the outcome determination

process, and one needs to impose additional structures to relax the overlap condition. One pos-

sibility is to impose that µ1(v), µ2(v) are real analytic and the conditional support of V given D

contains an open set. This identification argument was used by Arellano and Bonhomme (2017).

A nice feature of this approach is that the assumptions encompass the cases where µ1(v), µ2(v) are

polynomial functions of v, a widely used specification in empirical studies.

Flexible parametric model Let q(d, v) be a vector of some transformations of (d, v) e.g.,

q(d, v) = (1, d, v, dv)T. If desired, higher-order polynomial transformations may be included in

q(d, v). I postulate that the outcome equation satisfy

E[Y |D,V ] = Λ
(
q(D,V )Tγ0

)
(5)

where Λ is a known, strictly monotonic link function and γ0 is the parameter to be estimated.

This model encompasses a parametric version of the random coefficient model considered above.

Suppose

Y = ε1 + ε2D, E[ε1|D,V ] = p(V )Tγ1, E[ε2|D,V ] = p(V )Tγ2

where p(v) is a vector of transformations of v and the conditional independence εl ⊥⊥ D|V , l = 1, 2

follows under Assumptions 1-3 and 5. Relative to the above semiparametric model, the additional

restriction here is E[εl|V ] = p(V )Tγl for l = 1, 2. This random coefficient model fits into (5), where

Λ equals the identity function, q(D,V ) = (p(V )T, Dp(V )T)T, and γ0 = (γT1 , γ
T
2 )

T.

To provide another example of (5), consider the binary outcome model

Y = 1{γ0D ≥ ε}, ε ⊥⊥ (D,Z)|X∗.

Suppose that Fε|X∗(e|x∗) = F (e + δTx∗) for some function F and coefficient vector δ ∈ Rdim(X∗)

and that fX∗|DZ(x
∗|d, z) = f(x∗ − ι(d, z)) for some fixed functions f, ι. Also, X = X∗ + Ux with

4Let ν(D,Z) = E[G(X)|D,Z] = V . For v ∈ supp(V ), if there exist two distinct points (d1, z1), (d2, z2) ∈
supp(D,Z) such that v = ν(d1, z1) = ν(d2, z2), then the conditional variance of D given V = v is positive.
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Ux ⊥⊥ (X∗, D, Z) and E[U ] = 0. Then, V = E[X|D,Z] = ι(D,Z) and (5) holds with

Λ(·) =
∫
F (·+ δTu)f(u)du, q(D,V ) = (D,V T)T.

With dim(X∗) = 1, if F and f are standard normal cdf and density respectively, then Λ(y) =

F (y/
√
1 + δ2), implying a probit model.

Under (5), identification of treatment effects holds if the parameter γ0 is identified. In turn,

the coefficients γ0 are identified if the matrix E[q(D,V )q(D,V )T] is non-singular. This full-column

rank condition is weaker than the support invariance condition, and Chernozhukov et al. (2020) and

Newey and Stouli (2021) provided sufficient conditions for the non-singularity of E[q(D,V )q(D,V )T].

In the binary outcome example, the non-singularity of E[q(D,V )q(D,V )T] holds if for each d ∈

supp(D), there exist z1, z2 in supp(Z|D = d) such that ι(d, z1) ̸= ι(d, z2).

3 Estimation

I propose a semiparametric estimator for average treatment effects (ATEs) and flexible parametric

estimators for average causal effects. I provide a set of sufficient conditions for asymptotic normality

of the estimators and propose consistent variance estimators.

3.1 Semiparametric estimation

Theorem 2 indicates that instead of conditioning onV, it suffices to condition on a finite-dimensional

vector V = E[G(X)|D,Z] with some choice of G(x) = (g1(x), . . . , gk(x))
T and a partition based

on (D,Z). While there are generally many valid choices of G, researchers do not know a priori

what choice of G is appropriate. In this situation, a practical procedure is to initially include many

candidate functions and use a model selection procedure to choose relevant ones. To develop a

formal theory, I focus on a Lasso-based estimation method, building on the recent developments

using Neyman-orthogonal moments. The treatment here mostly follows Chernozhukov et al. (2022)

(henceforth CNS). In my setting, there is an additional complication due to the need to estimate

the control function V , a generated regressor problem, and I extend the theory of CNS to handle

the complication. For omitted details of the Neyman-orthogonal moment theory, I refer interested
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readers to CNS. Below, I focus on ATE as the parameter of interest. Although the discussion in

this section focuses on this specific estimand, the estimation method below can be extended to

other causal parameters and multi-valued treatment settings.

Let µ0(d, v) = E[Y |D = d, V = v] and V = ν0(D,Z) with ν0(D,Z) = E[G(X)|D,Z] where G(x)

potentially contains redundant elements, which may be discarded via a model selection procedure.

For the theory below, the choice of G is fixed in the asymptotics. Writing θ0 for ATE, we have

θ0 = E[µ0(1, V )− µ0(0, V )] ≡ E[m(Ξ, µ0, ν0)]

where Ξ = (Y,D,ZT, XT)T is a data observation and m(ξ, µ, ν) = µ(1, ν(d, z))−µ(0, ν(d, z)) is the

moment function. Having characterized the moment function m, a simple approach to estimate θ0

is to first estimate µ0, ν0 and form a sample analogue of E[m(Ξ, µ0, ν0)]. Yet, such plug-in approach

is known to suffer from bias arising from noises in the first-stage estimates of (µ0, ν0), especially

when one uses Lasso or other machine learning methods to select regressors. Neyman-orthogonal

estimation equations can be used to address this issue.

To describe the Neyman-orthogonal moment, let

α0(Ξ) =
D

P[D = 1|V ]
− 1−D

1− P[D = 1|V ]
.

CNS refers to this function as a Riesz representer, and it plays an important role in the theory

developed by CNS. Using the pathwise derivative calculation of Hahn and Ridder (2013) and Newey

(1994) with the assumptions imposed below, one can show that

ψ(Ξ, µ, ν, α) = m(Ξ, µ, ν) + α(D, ν(D,Z))[Y − µ(D, ν(D,Z))]

+

[
∂

∂V T
m(Ξ, µ, ν)− α(D, ν(D,Z))

∂

∂V T
µ(D, ν(D,Z))

]
[G(X)− ν(D,Z)]

is an orthogonal score function for the parameter θ0.
5 ψ being an orthogonal score means that (i)

5The form of the score function crucially depends on the auxiliary result E[Y |D,Z] = E[Y |D,V] almost surely
(c.f., Hahn et al., 2022). See Lemma A.3 in the supplemental appendix.

16



E[ψ(Ξ, µ0, ν0, α0)] = θ0 and (ii) for a path {µt, νt, αt : t ∈ [0, ϵ), ϵ > 0},

∂

∂t
E[ψ(Ξ, µt, νt, αt)]

∣∣
t=0

= 0

holds. This second property suggests that the score function is insensitive to the first-stage esti-

mation errors in (µ0, ν0, α0). Then, one can form an estimator of θ0 by first estimating (µ0, ν0, α0)

and plugging them into ψ to form a sample analogue of E[ψ(Ξ, µ0, ν0, α0)].

Following CNS, I use cross-fitting. Let {Il}Ll=1 be a L-fold partition of the sample. The number

of partition L is fixed (a common choice is L = 5, or 10), and the size of each partition should

be similar. Estimation involves multiple steps. In the first step, I estimate the control function

V = ν0(D,Z). Any nonparametric/machine learning method may be used to construct estimates

of V , and I write V̂ll′ = ν̂ll′(D,Z) for the estimate of V using observations not in Il, Il′ . Here, all

the elements in E[G(X)|D,Z] are estimated, some of which may be redundant and discarded later.

In the second step, I estimate (µ0, α0) using partitioning-based least squares estimation (e.g.,

Cattaneo et al., 2020) and Lasso. Let p(v) = (p1(v), . . . , pK(v))T be a vector of locally supported

approximating functions (e.g., piecewise polynomials) whose dimension K = Kn depends on the

sample size. Define

Ω̂l =
1

n− nl

∑
l′ ̸=l

∑
i∈Il′

 p(V̂i,ll′)p(V̂i,ll′)
T p(V̂i,ll′)p(V̂i,ll′)

TDi

p(V̂i,ll′)p(V̂i,ll′)
TDi p(V̂i,ll′)p(V̂i,ll′)

TDi



M̂µ
l =

1

n− nl

∑
l′ ̸=l

∑
i∈Il′

 p(V̂i,ll′)Yi

p(V̂i,ll′)DiYi

 , M̂α
l =

1

n− nl

∑
l′ ̸=l

∑
i∈Il′

 0

p(V̂i,ll′)


where nl is the size of Il. Then, the Lasso estimators of (µ0, α0) are given by µ̂l(d, v) = (p(v)T, p(v)Td)ρ̂l,

α̂l(d, v) = (p(v)T, p(v)Td)δ̂l where

ρ̂l = argmin
ρ

{
ρTΩ̂lρ− 2ρTM̂µ

l + 2κn∥ρ∥1
}
, δ̂l = argmin

δ

{
δTΩ̂lδ − 2δTM̂α

l + 2κn∥δ∥1
}
,

κn is a sequence of penalty terms that shrinks to zero, and ∥ · ∥1 is the ℓ1-norm on R2K . Finally,
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an estimator of the causal parameter is formed by

θ̂n =
1

n

L∑
l=1

∑
i∈Il

ψ(Ξi, µ̂l, ν̂l, α̂l)

where ν̂l is an estimate of ν0 using observations not in Il. Also, one can estimate the asymptotic

variance of θ̂n by

Ψ̂n =
1

n

L∑
l=1

∑
i∈Il

[
ψ(Ξi, µ̂l, ν̂l, α̂l)− θ̂n

]2
.

The use of a locally supported approximation basis is partly motivated by Theorem 2, which

states that the conditional expectation of interest can be expressed as the regression function of

(D,V ) with some partition defined by (D,Z). For concreteness, take piecewise polynomials as

the approximating basis p(·). Then, a researcher uses rectangles to partition the sample space

{(Di, Zi) : i = 1, . . . , n} and on each rectangle, one fits a regression of Y on polynomials of V̂

and their interactions with D. For details on piecewise polynomials and other local approximation

bases, see Cattaneo et al. (2020). In my setting, unlike the standard procedure, while partitioning

is based on {(Di, Zi) : i = 1, . . . , n}, regressors are D and polynomial functions of V̂ . Yet, the

theoretical analysis remains unchanged because V is a function of (D,Z) and as each rectangle

shrinks at an appropriate rate, the basis can approximate any smooth functions.6

To present a formal result on the asymptotic distribution of θ̂n, I define additional notations.

Write ∥ · ∥j for the ℓj-norm j = 1, 2 on Euclidean spaces. Let q(d, v) = (p(v)T dp(v)T)T be

the vector of approximating functions. For u = (u1, . . . , ul) ∈ Zl≥0, write |u| =
∑k

ℓ=1 uℓ and

∂uf(x) = ∂|u|f(x)/∂u1x1 . . . ∂
ulxl. Below C > 1 denotes a positive constant independent of the

sample size and represents a different number at different places.

Assumption 7. Observations {Yi, Di, Zi, Xi}ni=1 are a random sample. µ0 is twice continuously

differentiable in v and α0 is Lipschitz continuous in v. µ0, α0, and derivatives of µ0 are bounded.

Let ε = Y − µ0(D,V ). With probability one, E[ε2|D,Z] ≤ C <∞. Also, E[ε4] <∞.

This assumption imposes regularity conditions on the underlying data generating process, which

6The use of a local approximation basis is convenient because choosing a partition determines the tuning parameter
Kn. However, one can also use a partition whose element does not shrink to a point and use a global approximation
basis (e.g., polynomials) on each element of the partition. This approach is theoretically valid because an appropriate
partition in Theorem 2 is fixed (independent of the sample size). The assumptions below are stated in a way that
both approaches are accommodated.
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are mild and standard in the literature. The next assumption imposes that the first-stage estimate

of the control function is consistent and converges at a certain rate in L2 norm.

Assumption 8. The first-stage estimator ν̂n is uniformly bounded and satisfies
∫
∥ν̂n(t, z) −

ν0(t, z)∥22dFDZ(t, z) = OP(ω̃
2
n) where ω̃n = o(1) is the convergence rate of ν̂n.

Define

χa,n = max
1≤l≤Kn

max
|u|=a

sup
v∈supp(V )

|∂upl(v)| a = 0, 1, 2,

where ∂0p(u) = p(u). Then, let

ωn = χ1,nω̃n.

This rate plays an important role in the assumption below. With specific p(·), bounds on χa,n are

available in the literature. For instance, with polynomial splines, χa,n = K
1/2+a
n (Newey, 1997).

The next assumption needs some additional notation: given a set of indices J ⊂ {1, . . . , L} and

v ∈ RL, let #|J | be the cardinality of J , vJ be the #|J | × 1 subvector of v whose elements are

{vl : l ∈ J}, and vJc be the subvector of v that consists of elements not in vJ .

Assumption 9. The basis function p(·) is twice continuously differentiable. The eigenvalues of

E[p(V )p(V )T] and Ω = E[q(D,V )q(D,V )T] are bounded above uniformly in K. Ω and its sample

analogue Ω̂ satisfy that for any s = O(ω−2
n ), with probability approaching one,

min
J⊂{1,...,2K}

#|J |≤s

min
∥ρJc∥1≤3∥ρJ∥1

ρTΩ̂ρ

ρTJρJ
≥ c, min

J⊂{1,...,2K}
#|J |≤s

min
∥ρJc∥1≤3∥ρJ∥1

ρTΩρ

ρTJρJ
≥ c

where c > 0 is independent of K.

This condition is a sparse eigenvalue condition commonly used in the Lasso literature (see Assump-

tion 3 of CNS).

Assumption 10. Let ρ̄, δ̄ be least squares coefficients of projecting µ0, α0 onto q(D,V ), respectively.

i.e., Ωρ̄ = E[q(D,V )Y ] and Ωδ̄ = E[q(D,V )α0(D,V )]. There exists ζ > 1/2 such that for each

positive integer s, there exist ρ̃, δ̃ ∈ R2Kn satisfying that the number of non-zero elements in ρ̃, δ̃

are bounded by s and

∥ρ̄− ρ̃∥2 + ∥δ̄ − δ̃∥2 ≤ Cs−ζ .
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Let µ̄(d, v) = q(d, v)Tρ̄ and ᾱ(d, v) = q(d, v)Tδ̄. For t ∈ {0, 1},

E[|µ0(t, V )− µ̄(t, V )|2] + E[|µ0(D,V )− µ̄(D,V )|2] + E[|α0(D,V )− ᾱ(D,V )|2] = o(n−1/2),

E[∥∂{µ0(t, V )− µ̄(t, V )}/∂V ∥22] + E[∥∂{µ0(D,V )− µ̄(D,V )}/∂V ∥22] = o(1)

sup
v∈supp(V )

|µ0(t, v)− µ̄(t, v)|+ sup
v∈supp(V )

|α0(t, v)− ᾱ(t, v)| = o(1).

Assumption 10 imposes that µ0, α0 admit sparse approximations. I follow Bradic et al. (2022) in

the formulation of this condition (their Assumptions 3 and 8). There are two aspects that differ

from CNS: (L2-) approximation of the derivative of µ0 and uniform approximations of µ0 and α0.

These approximation properties hold for many of standard choices of approximating functions.

Theorem 3. Assumptions 1-10 hold and χℓ,n ≤ χℓ+1,n for ℓ = 0, 1. With κ̃n = κn/ωn, suppose

max1≤l≤L n/nl = O(1), Kn/n+ κ̃
−1
n +χ0,nmax{ω(2ζ−1)/(2ζ+1)

n , [n1/4 logKn]
−1}+χ1,nω

2ζ/(2ζ+1)
n κ̃n+

χ2,nω̃n = o(1), and ω
2ζ/(2ζ+1)
n κ̃n + (χ0,nχ2,n)

1/2ω̃n = o(n−1/4). Then,

√
n
(
θ̂n − θ0

)
⇝ Normal(0,Ψ0)

where Ψ0 = Var[ψ(Ξ, µ0, ν0, α0)] and ⇝ denotes convergence in distribution. Also, the variance

estimator Ψ̂n converges in probability to Ψ0.

The theorem states that the estimator θ̂n is
√
n-consistent and asymptotically normal under the

rate restrictions on the first-stage estimator, the Lasso penalty term, and the sup norm on the

∂up(v) with |u| ≤ 2. To illustrate, suppose we use polynomial splines as approximating functions

and ω̃n = n−τ1 , Kn = nτ2 for some τ1, τ2 > 0. Then, the hypothesis of Theorem 3 implies

2τ1 − 3τ2 > 1
2 + 1

4ζ . The restriction is somewhat stringent on the rate at which the number

of approximation terms can grow (i.e., Kn) because both the first and second stages are non-

parametric in V . It might be possible to relax rate restrictions and to obtain a better finite-sample

distributional approximation by carefully analyzing the higher-order terms of the estimator (e.g.,

in the spirit of Cattaneo et al., 2019). I leave such analysis for future work.
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3.2 Flexible parametric approach

In this section, I consider a flexible parametric estimation procedure based on the model (5) in

Section 2.2. Recall that (5) posits

E[Y |D,V ] = Λ(q(D,V )Tγ0)

where Λ(·), q(·) are specified by researchers and γ0 is to be estimated. For the control function V ,

I posit the model

V = E[G(X)|D,Z] = Q(D,Z)δ0,

where Q : supp(D,Z) → Rdv×dq is a user-chosen matrix-valued transformation of (D,Z) and

δ0 ∈ Rdq is the parameter to be estimated. As a baseline, one may use Q(D,Z) = I ⊗ q2(D,Z)

with I being the identity matrix, q2(D,Z) = (1, DT, ZT) and ⊗ denoting the Kronecker product.

Researchers can include higher-order polynomial terms to enhance flexibility.

For implementation, first estimate δ0 by least squares and form V̂i = Q(Di, Zi)δ̂n. Then,

estimate γ0 in E[Y |D,V ] = Λ(q(D,V )Tγ0) by (non-linear) regression of Y on q(D, V̂ ). Finally, the

estimator for θ0(d) = E[Y (d)] is formed by

θ̂n(d) =
1

n

n∑
i=1

Λ
(
q(d, V̂i)

Tγ̂n
)
.

One can form an estimate of the ATE by θ̂n(1)− θ̂n(0). For binary treatment, by forming the sum

over treated individuals i.e.,
∑n

i=1DiΛ(q(d, V̂i)
Tγ̂n)/

∑n
i=1Di, one can construct an estimator for

ATT as well.

For inference, it is useful to have a closed-form variance estimator. Let Λ̇ be the first derivative

of Λ,

q̂i = q(Di, V̂i), ε̂i = Yi − Λ(q̂Ti γ̂n), Qi = Q(Di, Zi), η̂i = G(Xi)−Qiδ̂n,

Γ̂1 =
1

n

n∑
i=1

QT
i Qi, Γ̂2 =

1

n

n∑
i=1

∣∣Λ̇(q̂Ti γ̂n)∣∣2q̂iq̂Ti , Γ̂3 = − 1

n

n∑
i=1

|Λ̇(q̂Ti γ̂n)|2q̂iγ̂Tn ∂q(Di, V̂i)Qi,

ĉ1(d) =
1

n

n∑
i=1

Λ̇(q(d, V̂i)
Tγ̂n)q(d, V̂i)

T, ĉ2(d) =
1

n

n∑
i=1

Λ̇(q(d, V̂i)
Tγ̂n)γ̂

T
n ∂q(d, V̂i)Qi,
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and ∂q be the derivative of q with respect to V . Then,

Ψ̂n(d) =
1

n

n∑
i=1

[
Λ(q(d, V̂i)

Tγ̂n)− θ̂n(d) + ĉ1(d)Γ̂
−1
2 q̂iΛ̇(q̂

T
i γ̂n)ε̂i + {ĉ1(d)Γ̂−1

2 Γ̂3 + ĉ2(d)}Γ̂−1
1 QT

i η̂i
]2

is an estimator for the asymptotic variance of
√
n(θ̂(d) − θ(d)). Note that the variance estimator

does not require additional nuisance parameter estimation.

Since the asymptotic distributional theory for θ̂n(d) is well-established (e.g., Newey and Mc-

Fadden, 1994), I relegate the discussion of the asymptotic theory to the appendix. Under the

assumptions stated there, the estimator θ̂n(d) is asymptotically normal and the variance estimator

is consistent.

4 Empirical application

I apply the results developed in this paper to studying causal effects of grade retention on short-

term academic performance. I use W to denote the vector of observed control variables such as

student and school characteristics.

4.1 Data description

I use data from Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K),

a longitudinal study that followed a sample of students from kindergarten to the fifth grade. The

study sample consists of children enrolled in kindergarten during the 1998-1999 school year, and

the initial sampling was designed to obtain a nationally representative sample in the United States.

The first year of the longitudinal study (referred to as Year 1 in the sequel) corresponded to the

1998-1999 school year. In Year 2, most students were enrolled in the first grade while some students

(approximately 3%) repeated the kindergarten grade. In ECLS-K, students were assessed on their

knowledge in reading, mathematics, and general science in the fall and spring of Year 1 and the

spring of Year 2. Identical assessment batteries were used regardless of student’s retention status.

I use the measures in Year 1 as proxy variables for the unobserved cognitive skill and the measures

in Year 2 as the outcomes of interest.

For the choice of regression controls, I build on Fruehwirth et al. (2016), who used ECLS-K
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data to study causal effects of grade retention over a longer time horizon. Covariates include

student/family characteristics and classroom/school characteristics. In addition to proxy variables

for cognitive skills, the dataset contains (noisy) measures of student’s personality traits. I also

observe measures of parental investment in child’s human capital. The variables used in analysis

are listed in Tables 1 and 2 along with summary statistics. Exploiting the availability of multiple

measurements of student ability, I use some proxy variables measured at the fall of Year 1 as part

of Z, for which I discuss the plausibility of the identifying assumptions below. The full sample

of ECLS-K contains 21,409 students and after dropping units with missing observations, the final

sample consists of 6,277 students, out of whom 205 students repeated the kindergarten grade.

Relative to students who proceeded to the first grade, retained students have lower test scores on

average across subjects and time of test administration. The treated group has the lower averages

of Socioeconomic Status measure and child’s age, has a higher percentage of male students, and

has more books at home while the averages of other variables are mostly comparable between the

treated and control groups.

In the ECLS-K sample, students attended schools across various U.S. school districts, and I

do not have good information on how grade retention decisions were made. Then, I conduct the

empirical analysis under the assumption that the grade retention decision was a function of student

cognitive ability, student maturity, and other idiosyncratic shocks. That is, letting X∗ = (X∗
1 , X

∗
2 )

T

where X∗
1 and X∗

2 denote cognitive ability and maturity level evaluated by school teachers, I assume

that D = h(X∗,W, η) where h is some fixed function, η is an idiosyncratic shock, and W is the

vector of observed controls. One concern about this assumption is that schools are likely to vary in

their retention policies. In an attempt to address this issue, I include in W school characteristics as

well as variables that describe school’s formal retention policies e.g., whether schools retain students

based on maturity or parent’s request.

Plausibility of the identifying assumptions have been discussed in Section 2.1. I provide addi-

tional comments regarding the assumptions related to measurement errors. In the present context,

X∗ denotes student’s ability at the end of Year 1 when a grade retention decision is made, Z con-

tains proxy variables measured in the fall of Year 1, and X come from proxy variables measured

in the spring of Year 1. Then, Y (d) ⊥⊥ Z|X∗ (part of Assumption 1) seems reasonable because

conditional on ability at the end of Year 1, test scores in early part of Year 1 are less likely to have

23



predictive power for test scores in Year 2. For Assumption 2, X consist of test scores measured in

the spring of Year 1, and a key assumption is that these test scores did not directly affect the grade

retention decision, conditional on the underlying ability X∗. According to Deaner (2023, p.35), test

scores in the ECLS-K study were not shared with the students, parents, nor teachers, and thus, it

is plausible that these measures did not directly affect the grade retention decision. Also, since I

use some proxy variables in Z, Assumption 2 requires that the measurement errors in X and those

in the test scores included in Z be independent. This restriction may be plausible given that test

scores in X were measured at a different time from those in Z. If X and Z were to include test

scores measured on the same day, the measurement errors could be correlated e.g., students were

feeling unwell on the day of test taking and performed systematically worse than if they had not

been sick.

As the parameter of interest, I focus on the average treatment effects on the treated (ATTs).

Because grade retention is most relevant for academically struggling students, ATTs are more

natural objects to consider than the average treatment effects, which are based on the distribution

of all students. For comparison, I also estimate ATTs using proxy variables as additional controls.

Under my econometric framework, using proxy variables as controls does not fully address the

endogeneity issue because measurement errors induce bias in the estimates.

4.2 Model specifications

I use the modelling approach discussed in Sections 2.2 and 3.2. For the outcome equation, I use

the specification (5) with the identity link function.

For the specification of the control function V , I use two approaches. The first one is the

regression specification as discussed in Section 3.2. Specifically, let X = (X1, X2)
T where X1 is a

proxy for cognitive ability and X2 is a noisy measure of student maturity, and I specify

V =
(
E[X1|D,Z,W ],E[X2|D,Z,W ]

)T
(6)

i.e., G(x) = (x1, x2)
T in the notation of the previous sections. Also, I model the regression functions

by linear specifications.

For the second approach, I use the framework of Spady and Stouli (2020). I briefly describe
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their framework and refer interested readers to the original paper for details. For random variables

U1 ∈ R, U2 ∈ Rk, their modelling strategy starts from the observation that if the conditional

distribution of U1 given U2 is continuous,

Φ−1
(
FU1|U2

(U1|U2)
)
=d Normal(0, 1)

where Φ is the cdf of standard normal. The model primitive is the function g(u1, u2) ≡ Φ−1(FU1|U2
(u1|u2)),

and they propose to use the specification

g(u1, u2) = S1(u1)⊗ S2(u2)δ0

where S1, S2 are vectors of transformations whose first element is unity and δ0 is the parameter to

be estimated. If S1(u1) = 1 and S2(u2) = (1, uT2 )
T, then g function corresponds to the case where

FU1|U2
(u1|u2) = Φ(

u1−uT2β
σ ) i.e., Gaussian case. Including additional terms in Si’s allows for flexible

modelling of the conditional distribution. For my application, letting Z̃ = (D,Z,W ), I model

FX1|X2Z̃
and FX2|Z̃ using Spady and Stouli (2020)’s approach, where I impose restrictions on the

parameters so that each of FX1|X2Z̃
(x1|x2, z̃) and FX2|Z̃(x2|z̃) satisfies the single-index restriction

as in (3). Then, as discussed above, I can use the two-dimensional random vector ψ(Z̃) as a valid

control function.

I use the reading score as X1 and the self-control measure as X2, both of which were measured

in the spring of Year 1. For Z, I use measures of parental investment in child’s human capital as

well as math, approach-to-learning, and interpersonal scores, all of which were measured in the

fall of Year 1. These proxies exhibit large average gaps across the treated and control groups,

which heuristically motivated the choice. More importantly, the choices of these proxy variables

are dictated by the restrictions that only scores measured in the spring of Year 1 be used as X,

that Z only contain scores from the fall of Year 1, and that both cognitive and behavioral measures

be included in X and Z.

In the next section, I present ATT estimates along with some robustness checks on the above

specifications as well as testing some of the model implications. Given the availability of repeated

measures, I test the conditional independence restriction involving measurement errors. Namely,
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Assumption 2 imposes that measurement errors in test scores of the spring of Year 1 be statistically

independent of the treatment status conditional on X∗. The proof of Theorem 1 indicates that

under Assumptions 1-3, proxy variables should be orthogonal to the treatment indicator D once

conditional on the control function. Since I have four measurements taken in the spring of Year 1

that were not used in estimation, I conduct an empirical test of the above model implication by

regressing the unused test scores on the treatment variable and the control function. The use of

left-out measurements is motivated by the idea that using X both in the control function estimation

and in the testing might lead to spurious results in a moderate sample size. I should note that the

empirical test only considers the restriction on averages, and failure to reject the null hypothesis of

conditional mean independence does not guarantee that Assumption 2 holds.

4.3 Estimation results

In Table 3, I present the results of the linear regressions of unused proxies on the treatment, the

control function, and other controls. If my identifying assumptions hold, we should see that the

coefficient estimate be not statistically different from zero. For both specifications of the control

functions, the coefficients on the treatment dummy, except for one, are not distinguishable from

zero. For the index specification, the result is consistent with the assumption that the measurement

errors are orthogonal to the treatment status given X∗, and the same is true for the regression

specification except for one test score. I proceed with both specifications, and as seen below, the

estimation results are mostly comparable across the specifications.

Figure 2 contains the histogram of estimated propensity score. I estimate the propensity score

by logistic regression using the control function with the index specification and other covariates.

From the histogram, the propensity score is bounded away from 1 but it is not bounded away from

0. Because I focus on ATTs, Assumption 4 seems to hold.

As a further specification check, I conduct the conditional Kolmogorov-Smirnov test of Andrews

(1997) to test whether the modelling approach of Spady and Stouli (2020) is appropriate with

the proxy variables in the ECLS-K sample. Specifically, I test whether the parametric model of

the conditional distribution of X given (D,Z,W ) fits well with the data. Using 1,000 bootstrap

iterations, the p-value of the test statistic is 0.88; I do not reject the parametric specification of the

conditional distribution.
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In Table 4, I present the estimates of ATTs and the associated 95% confindence intervals.

The outcomes are standardized so the ATT estimates can be interpreted as changes in standard

deviation. On the first column, the estimates based on OLS using proxy variables as additional

controls i.e., this specification controls for all the past test scores. Due to measurement errors, I

expect that the OLS estimates suffer from bias. For the remaining columns, the estimates based on

my control function method with different specifications are presented. The columns “(1)” “(2)”

“(4)” present estimates using the index specification of V , where the “(1)” is based on regression

with a linear specification, “(2)” is based on regression including square and interaction terms, and

“(4)” contain estimates based on inverse probability weighting (IPW). The columns “(3)” “(5)”

present estimates using the mean specification (6), where “(3)” is based on regression with square

and interaction terms and “(5)” is for IPW estimates.

For the general knowledge test, the OLS estimate suggests a statistically significant negative

effect of grade retention (0.09 standard deviations) while the control function estimates suggest that

the effect is indistinguishable from 0. For the math score, the causal effect estimates based on OLS

indicate that the grade retention effect is substantial i.e., 0.46 standard deviations. In contrast,

the control function methods suggest the causal effect is much smaller than the OLS estimate i.e.,

point estimates around 0.3 standard deviations, although the IPW estimates are closer to the OLS

estimate. For reading, the differences between the OLS and control function estimates are smaller

than for the other subjects, and yet, the control function estimates still indicate that the effects

are smaller than what the OLS estimate might suggest.

The existing studies in the economics of education literature suggest that short-term causal

effects of grade retention are often null or slightly positive. For example, Jacob and Lefgren (2009)

observed that observational studies using non-experimental designs found negative associations

between grade retention and academic achievements whereas their causal estimates of short-run

effects were not distinguishable from zero. In light of the findings in the existing empirical literature,

the above estimation result might suggest that the proposed control function method corrects for the

bias due to unobserved ability, at least partially if not completely. Thus, this empirical application

indicates the importance of properly dealing with measurement errors in covariates.
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5 Conclusion

I developed a new identification strategy for causal effects such as the average treatment effects by

exploiting proxy variables for unobserved confounding factors. Using this new result, I provided a

simple, rgression-based method to estimate causal effects. Specifically, I developed a Lasso-based

method to flexibly choose regression specifications for my control function method. As illustrated

through an empirical application, measurement errors in covariates can have non-negligible impact

on causal estimates.
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Figure 1: Independence Assumptions via DAG
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Notes. Arrows represent causal effects and dotted lines mean that two variables may have a causal relationship
with unspecified direction of effects.
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Table 1: Summary statistics

All: N=6277 Control: N=6072 Treated: N=205

Mean Std.dev. Mean Std.dev. Mean Std.dev.

Outcome

General score Y2 0.217 0.870 0.237 0.860 −0.396 0.948

Math score Y2 0.153 0.985 0.191 0.968 −0.983 0.793

Reading score Y2 0.124 0.971 0.166 0.954 −1.124 0.556

Covariates

SES measure 0.131 0.759 0.139 0.757 −0.105 0.798

Body mass index 16.236 2.110 16.242 2.117 16.062 1.896

Teacher experience 14.454 9.027 14.470 9.019 13.995 9.273

Class size 20.457 4.974 20.493 4.957 19.390 5.340

Male 0.501 0.500 0.496 0.500 0.654 0.477

White 0.678 0.467 0.678 0.467 0.673 0.470

Black 0.118 0.323 0.118 0.323 0.132 0.339

Hispanic 0.108 0.311 0.108 0.311 0.107 0.310

Age 5.850 0.690 5.857 0.696 5.634 0.418

Kindergarten full-time 0.570 0.495 0.569 0.495 0.612 0.487

# of siblings 1.406 1.081 1.400 1.075 1.585 1.252

TV rule at home 0.893 0.309 0.893 0.310 0.902 0.297

Absence of father 0.164 0.370 0.163 0.369 0.195 0.397

Absence of mother 0.014 0.118 0.014 0.117 0.020 0.139

% minority in school:

1-5% 0.206 0.404 0.207 0.405 0.171 0.377

5-10% 0.157 0.364 0.159 0.366 0.112 0.316

10-25% 0.101 0.301 0.100 0.300 0.122 0.328

>25% 0.124 0.330 0.124 0.330 0.137 0.344

Public school 0.780 0.414 0.783 0.412 0.698 0.460

Title 1 Funding 0.620 0.485 0.621 0.485 0.595 0.492

Crime is a concern 0.428 0.562 0.426 0.562 0.512 0.548

Students bring weapon 0.164 0.370 0.166 0.372 0.102 0.304

Teacher/student attacked 0.372 0.483 0.372 0.483 0.371 0.484

Security measure 0.055 0.228 0.055 0.227 0.068 0.253

Parent involvment 2.998 0.900 3.000 0.897 2.912 0.976

Teacher has MA degree 0.350 0.477 0.351 0.477 0.307 0.463

Class behavior rating 1.564 0.787 1.560 0.786 1.668 0.815

% minority in classroom:

1-5% 0.083 0.276 0.083 0.276 0.083 0.276

5-10% 0.130 0.337 0.130 0.337 0.137 0.344

10-25% 0.195 0.396 0.195 0.396 0.200 0.401

>25% 0.390 0.488 0.390 0.488 0.385 0.488

Retention policy:

For immatuiry 0.763 0.425 0.763 0.425 0.766 0.425

Needs parent approval 0.452 0.498 0.452 0.498 0.429 0.496

For parent request 0.761 0.426 0.762 0.426 0.746 0.436

Notes. Outcome test scores were standardized to have zero mean and unit variance before the sample construction
process.
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Table 2: Summary statistics: continued

All: N=6277 Control: N=6072 Treated: N=205

Mean Std.dev. Mean Std.dev. Mean Std.dev.

Proxy variables

General score Y1S 0.187 0.941 0.207 0.935 −0.418 0.914

Math score Y1S 0.176 0.973 0.204 0.968 −0.677 0.667

Reading score Y1S 0.087 0.988 0.114 0.989 −0.705 0.537

App.to learning score Y1S 0.127 0.954 0.157 0.939 −0.757 0.975

Self-control score Y1S 0.105 0.963 0.119 0.960 −0.316 0.982

Interpersonal score Y1S 0.115 0.968 0.131 0.966 −0.337 0.929

General score Y1F 0.168 0.970 0.190 0.965 −0.482 0.863

Math score Y1F 0.159 0.989 0.186 0.988 −0.647 0.602

Reading score Y1F 0.077 0.974 0.099 0.979 −0.583 0.493

App.to learning score Y1F 0.142 0.962 0.168 0.951 −0.621 0.981

Self-control score Y1F 0.094 0.962 0.106 0.959 −0.279 0.980

Interpersonal score Y1F 0.095 0.966 0.107 0.965 −0.273 0.925

Excluded variables

# of books at home 83.429 60.269 83.724 60.246 74.683 60.431

# of CDs at home 16.552 17.995 16.614 17.963 14.707 18.887

How often parents:

Read to child 3.304 0.748 3.306 0.746 3.244 0.810

Tell stories 2.743 0.913 2.741 0.909 2.800 1.026

Sing songs together 3.124 0.909 3.127 0.907 3.034 0.977

Help doing art 2.660 0.846 2.661 0.845 2.615 0.870

Involve child in chores 3.300 0.846 3.297 0.846 3.390 0.825

Play games together 2.790 0.797 2.789 0.794 2.815 0.872

Talk about nature 2.248 0.855 2.245 0.853 2.337 0.891

Build together 2.361 0.902 2.356 0.898 2.483 1.003

Play sport together 2.683 0.888 2.682 0.888 2.727 0.888

Look at picture book 3.354 0.779 3.357 0.778 3.259 0.802

Read on their own 2.977 0.900 2.986 0.898 2.732 0.940

Watch Sesame Street 0.574 0.495 0.574 0.495 0.576 0.495

Notes. All the test scores (proxy variables) were standardized to have zero mean and unit variance before the
sample construction process. Y1S stands for “Year 1 Spring” and Y1F stands for “Year 1 Fall”.
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Table 3: Testing the conditional independence restriction on measurement errors

General score Math score App.to.learn score Interpersonal score

Index Specf.
Coef. Est. 0.092 0.123 −0.091 0.014
Std. err. 0.098 0.139 0.123 0.124
95% CI [−0.113 0.263] [−0.189 0.368] [−0.362 0.129] [−0.244 0.242]

Reg. Specf.
Coef. Est. −0.005 0.067 −0.168 0.018
Std. err. 0.051 0.041 0.062 0.051
95% CI [−0.106 0.096] [−0.016 0.149] [−0.287 −0.040] [−0.080 0.120]

Notes. The estimated model is X̃ = α+ βD + γTV + δTW + ϵ where X̃ equals either general subject score or
interpersonal skills score. The top panel presents the regression coefficient estimates using V with the index
specification. The bottom panel shows the results for V specified by (6). The standard errors and quantiles for the
confidence intervals were computed using 1,000 bootstrap iterations.

Table 4: ATT estimates

OLS (ME bias) CF (1) CF (2) CF (3) CF (4) CF (5)

Geneal
Est. −0.088 0.009 0.020 −0.019 0.019 −0.025
95% CI [−0.161 −0.014] [−0.190 0.179] [−0.186 0.207] [−0.136 0.089] [−0.198 0.229] [−0.155 0.106]

Math
Est. −0.461 −0.290 −0.339 −0.326 −0.394 −0.406
95% CI [−0.536 −0.386] [−0.592 −0.080] [−0.628 −0.091] [−0.431 −0.223] [−0.589 −0.183] [−0.517 −0.291]

Reading
Est. −0.572 −0.446 −0.489 −0.486 −0.560 −0.573
95% CI [−0.635 −0.510] [−0.696 −0.262] [−0.719 −0.323] [−0.564 −0.401] [−0.715 −0.395] [−0.651 −0.481]

Notes. The column “OLS (ME bias)” contains estimates based on regression using proxy variables as controls. The
columns “CF (1)” “CF (2)” “CF (4)” present estimates using the index specification of V , where the “CF (1)” is
based on regression with a linear specification, “CF (2)” is based on regression including square and interaction
terms, and “CF (4)” contain estimates based on inverse probability weighting (IPW). The columns “CF (3)” “CF
(5)” present estimates using the mean specification (6), where “CF (3)” is based on regression with square and
interaction terms and “CF (5)” is for IPW estimates. The quantiles for the confidence intervals were computed
using 1,000 bootstrap iterations.
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Figure 2: Histogram of Estimated Propensity Score

Notes. The propensity score is estimated by logistic regression using the control variables and the estimated V
variable, specified by the index restriction.
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