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A Proofs

Notation Given a measure µ, L2(µ) denotes the space of square µ-integrable functions. For

a random variable A, FA is the distribution of A. Equal signs involving random variables are

understood as equality with probability one.

A.1 Proof of Theorem 1

Remark For the proof below, consider the linear operator Π : L2(FX∗) 7→ L2(FX), Π(g)(x) =

E[g(X∗)|X = x]. Assumption 5 implies that Π is compact (see e.g., Carrasco et al., 2007, p.5659).

By Theorem 15.16 of Kress (2014), there exist non-negative singular values {τj}j≥1 and orthonormal

sequences {ϕj}j≥1 ⊂ L2(FX∗), {φj}j≥1 ⊂ L2(FX) for the operator Π. Theorem 15.18 of Kress

(2014) implies that for any function g ∈ L2(FX∗) in the orthogonal complement of the null space

of Π, we have

g(x∗) =
∞∑
j=1

E[h(X)φj(X)]

τj
ϕj(x

∗), h(x) = Π(g)(x) (S-1)

with
∑∞

j=1 τ
−2
j E[h(X)φj(X)]2 <∞.

By the law of iterated expectations and Assumption 2, for FX -almost all x

fX|DZ(x|D,Z)
fX(x)

=

∫
fX|X∗DZ(x|x∗, D, Z)

fX(x)
fX∗|DZ(x

∗|D,Z)dλ∗(x∗)

=

∫
fX|X∗(x|x∗)
fX(x)

fX∗|DZ(x
∗|D,Z)dλ∗(x∗)

= Π

(
fX∗|DZ(·|D,Z)

fX∗(·)

)
(x).

Since Assumptions 3 and 5 imply that fX∗|DZ(·|d, z)/fX∗(·) lies in the orthogonal complement of

the null space of Π, (S-1) implies

fX∗|DZ(x
∗|D,Z)

fX∗(x∗)
=

∞∑
j=1

τ−1
j

∫
fX|DZ(x|D,Z)

fX(x)
φj(x)fX(x)dλ(x)ϕj(x

∗)

=
∞∑
j=1

τ−1
j

∫
fX|DZ(x|D,Z)φj(x)dλ(x)ϕj(x∗).
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This equation implies, for any y ∈ R,

Pr[Y (d) ≤ y|D,Z]

=

∫
Pr[Y (d) ≤ y|X∗ = x∗, D, Z]fX∗|DZ(x

∗|D,Z)dλ∗(x∗)

=

∫
Pr[Y (d) ≤ y|X∗ = x∗]fX∗|DZ(x

∗|D,Z)dλ∗(x∗)

=

∫
Pr[Y (d) ≤ y|X∗ = x∗]

( ∞∑
j=1

τ−1
j

∫
φj(x)fX|DZ(x|D,Z)dλ(x)ϕj(x∗)

)
fX∗(x∗)dλ∗(x

∗)

where the first equality is by the law of iterated expectations, and the second equality follows

from Assumption 1. Lemma SA-1 below implies that the infinite sum and the outer integral are

exchangeable, and thus,

Pr[Y (d) ≤ y|D,Z] =
∞∑
j=1

τ−1
j E[Pr[Y (d) ≤ y|X∗]ϕj(X

∗)]

∫
φj(x)fX|DZ(x|D,Z)dλ(x)

≡
∞∑
j=1

ςj(d)

τj

∫
φj(x)V(x)dλ(x), ςj(d) = E[Pr[Y (d) ≤ y|X∗]ϕj(X

∗)]

where
∑∞

j=1 τ
−2
j |

∫
φj(x)V(x)dλ(x)|2 <∞ by (S-1). Then, Pr[Y (d) ≤ y|D,Z] is σ(V)-measurable,

and by σ(V) ⊆ σ(D,Z), Pr[Y (d) ≤ y|D,Z] = Pr[Y (d) ≤ y|V]. Thus, Pr[Y (d) ≤ y|D,V] =

E[Pr[Y (d) ≤ y|D,Z]|D,V] = E[Pr[Y (d) ≤ y|V]|D,V] = Pr[Y (d) ≤ y|V], which is the desired

conditional independence result.

To prove the second part of the theorem, first note E[Y |D = d,V] = E[Y (d)|D = d,V] =

E[Y (d)|V] where the second equality holds by the conditional independence result above. Also,

E[Y (d)|V] = E[Y (d)|D,Z] by the argument above. Thus, E[Y |D = d,V] = E[Y (d)|D,Z] and

E[Y (d)] = E[E[Y (d)|D,Z]] = E[E[Y |D = d,V]]

provided that the last expectation is well-defined, which is equivalent to that the conditional support

of V given D = d is equal to the marginal support of V.

Fix v ∈ supp(V), and by definition, for any open set U ⊂ L2(λ) containing v, P[V ∈ U ] > 0.

By Bayes’ rule,

P[V ∈ U |D = d] =
P[D = d|V ∈ U ]P[V ∈ U ]

P[D = d]
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and the right-hand side is strictly positive by P[V ∈ U ] > 0 and Assumption 4. Since U is an

arbitrary open set, v belongs to the conditional support of V, and the desired result follows.

A.2 Proof of Theorem 2

Notations The underlying probability space is denoted by (Ω,F ,P). Let Γ(v) =
∫
G(x)f(x, v)dλ(x)

and Vψ be a probability one set on which ∂
∂vT

Γ(v) is of column rank dψ. A diffeomorphism is a

continuously differentiable bijective function whose inverse is also continuously differentiable. For

a finite measure space (X ,G,P) where PX is finite but may not equal one, I consider “condi-

tional expectations” in the exactly same way as for probability spaces. That is, with Y ∈ L1

and a sub sigma-field H ⊂ G, I define E[Y |H] to be a H-measurable random variable satisfying∫
X 1HY dP =

∫
X 1HE[Y |H]dP for all H ∈ H.

First note σ(V ) ⊆ σ(V) since V =
∫
G(x)V(x)dλ(x) is a measurable function of V.

Suppose that there is a partition {Pj ∈ σ(D,W,Z) : j ∈ N} of Ω such thatV is σ(V )-measurable

on the measure space (Ω ∩ Pj ,F ∩ Pj ,Pj) where F ∩ Pj = {F ∩ Pj : F ∈ F} and Pj(·) = P(· ∩ Pj).

Then,

E[Y |V, D,W ] =
∑
j≥1

E[Y |V, D,W ]1Pj =
∑
j≥1

Ej [Y |Pj |V, D,W ]1Pj =
∑
j≥1

Ej [Y |Pj |V,D,W ]1Pj

where the first equality follows from 1 =
∑

j≥1 1Pj with at most one j having 1Pj > 0, the second

equality uses Lemma SA-2 below, and the third equality uses the fact that σ(V) = σ(V ) on

(Ω∩Pj ,F ∩Pj ,P). Thus, to prove the theorem, it suffices to exhibit a partition {Aj ∈ σ(D,W,Z) :

j ∈ N} such that V is σ(V )-measurable on (Ω ∩Aj ,F ∩Aj ,P).

Since ∂
∂vT

Γ(v) is continuous on Rdψ , for each v ∈ Vψ, there exists an open set containing v on

which Γ(v) is of rank dψ by Proposition 4.1 of Lee (2013). Let Iv ⊂ {1, . . . , k} be the set of indices

whose corresponding rows of ∂
∂vT

Γ(v) are linearly independent and πIv : Rk → Rdψ be the canonical

projection of the corresponding elements. By the inverse function theorem, there is some open set

Uv ∋ v on which πIv◦Γ is a diffeomorphism. The collection {Uv : v ∈ Vψ} is an open cover of Vψ, and

choose a countable open subcover {Uj : j ∈ N} of Vψ to define Aj = {ω ∈ Ω : Vψ(ω) ∈ Uj\∪j−1
i=1 Ui}.

Since Vψ = ψ(D,W,Z) and Uj is an open subset of Rdψ , Aj is σ(D,W,Z)-measurable.

Now consider the measure space (Ω∩Aj ,F ∩Aj ,Pj). As shown above, there exists a projection
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πj such that πj ◦Γ is a diffeomorphism on the open ball Uj ⊂ Rdψ and we have Vψ = (πj ◦Γ)−1(V )

on Aj . Thus, Vψ can be written as a measurable function of V , proving σ(V) = σ(V ) on (Ω ∩

Aj ,F ∩Aj ,Pj).

A.3 Auxiliary results

Lemma SA-1. For a transformation T , suppose E[T (Y (d))2] < ∞. Under Assumptions 2, 3,

and 5,

∫
E[T (Y (d))|X∗ = x∗]

( ∞∑
j=1

τ−1
j ej(d, z)ϕj(x

∗)

)
fX∗(x∗)dλ1(x

∗) =
∞∑
j=1

τ−1
j ej(d, z)ςj(d)

where ej(t, z) =
∫
fX|DZ(x|t, z)φj(x)dλ(x) and ςj(d) = E[E[T (Y (d))|X∗]ϕj(X

∗)].

Proof. Note that the infinite sum
∑∞

j=1 τ
−1
j ej(d, z)ϕj converges in L2(FX∗) as discussed around

(S-1). Since E[T (Y (d))|X∗] ∈ L2(FX∗),

∫
E[T (Y (d))|X∗ = x∗]

( ∞∑
j=1

τ−1
j ej(d, z)ϕj(x

∗)

)
fX∗(x∗)dλ(x∗)

= lim
N→∞

∫
E[T (Y (d))|X∗ = x∗]

( N∑
j=1

τ−1
j ej(d, z)ϕj(x

∗)

)
fX∗(x∗)dλ(x∗).

For each N ∈ N,

∫
E[T (Y (d))|X∗ = x∗]

( N∑
j=1

τ−1
j ej(d, z)ϕj(x

∗)

)
fX∗(x∗)dλ(x∗) =

N∑
j=1

τ−1
j ej(d, z)ςj(d)

and this infinite sum converges as
∑∞

j=1 τ
−2
j ej(d, z)

2 < ∞ and
∑∞

j=1 ςj(d)
2 < ∞. The latter

inequality follows from E[T (Y (d))|X∗] ∈ L2(FX∗) and {ϕj}j≥1 being an orthonormal sequence in

L2(FX∗). Then, the desired conclusion follows.

Lemma SA-2. Let (Ω,F ,P) be a probability space, Y be a random variable with a finite expectation,

G ⊂ F be a sub sigma field, and Ω̃ ∈ G be a subset of Ω. Also, Y |Ω̃ is the restriction of Y to Ω̃,

G̃ = {G∩ Ω̃ : G ∈ G}, and F̃ = {F ∩ Ω̃ : F ∈ F}. Define E[Y |Ω̃|G̃] to be a G̃-measurable real-valued
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function satisfying
∫
Ω̃ 1G̃Y |Ω̃dP =

∫
Ω̃ 1G̃E[Y |Ω̃|G̃]dP for all G̃ ∈ G̃. Then,

E[Y |G] = E[Y |Ω̃|G̃]

except for a null set in G̃.

Proof. Since Y = Y |Ω̃ on Ω̃, for any G̃ ∈ G̃,

∫
Ω̃
1G̃Y |Ω̃dP =

∫
Ω
1G̃Y dP =

∫
Ω
1G̃E[Y |G]dP =

∫
Ω̃
1G̃E[Y |G]dP

where the second equality uses G̃ ∈ G and the definition of a conditional expectation and the last

equality uses 1G̃E[Y |G] = 0 almost surely outside Ω̃. Since G̃ was arbitrary, the definition implies

the desired result.

Lemma SA-3. Suppose that Assumptions 1, 2, 3, 5 hold. Then, E[Y |D,Z] is (V, D)-measurable.

In particular, E[ε|D,Z] = 0 for ε = Y − E[Y |V, D].

Proof. Using Y = Y (1)D + Y (0)(1−D) and Y (d) ⊥⊥ (D,Z)|X∗,

E[Y |D,Z] = E[E[Y (1)|X∗, D, Z]D + E[Y (0)|X∗, D, Z](1−D)|D,Z]

= E[E[Y (1)|X∗]D + E[Y (0)|X∗](1−D)|D,Z]

=
∑

d∈{0,1}

1{D = d}
∫

E[Y (d)|X∗ = x∗]fX∗|DZ(x
∗|d, Z)dλ∗(x∗)

Arguing as in the proof of Theorem 1,

E[Y |D,Z] =
∑

d∈{0,1}

1{D = d}
∞∑
j=1

τ−1
j E[E[Y (d)|X∗]ϕj(X

∗)]

∫
fX|DZ(x|d, Z)φj(x)dλ(x).

Letting ςy,j(d) = E[E[Y (d)|X∗]ϕj(X
∗)],

E[Y |D,Z] =
∞∑
j=1

τ−1
j ςy,j(D)

∫
V(x)φj(x)dλ(x),

which proves the desired result.

The following is a slight modification of a known sufficient condition for bounded completeness.
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Lemma SA-4. Let X = χ(X∗ + η) where X∗ ⊥⊥ η and χ is invertible. Suppose X∗ and η are

continuously distributed, and the characteristic function of η is non-zero everywhere. Then, the

family of distributions {fX∗|X(·|x) : x ∈ X}, where X is the support of X, is bounded complete.

Proof. For any bounded function b, E[b(X∗)|X] = E[b(X∗)|X∗ + η] almost surely because χ is

invertible, implying σ(X) = σ(X∗ + η). Thus, without loss of generality, assume χ is the identity

function. Since fX∗X(y, x) = fX∗(y)fη(x− y),

E[b(X∗)|X] =

∫
b(y)fX∗(y)fη(X − y)dy =

∫
b̃(y)fη(y −X)dy

where b̃(y) = b(−y)fX∗(−y). By Theorem 2.1 of Mattner (1993),
∫
b̃(y)fη(y − X)dy = 0 almost

surely implies b̃(y) = 0 almost surely. This in turn implies b(y) = 0 for y such that fX∗(y) > 0.

Thus, bounded completeness holds.

A.4 Proof of Theorem 3

The proof builds on the arguments of Chernozhukov et al. (2022) (henceforth CNS). Write β0(v) =

µ0(1, v)− µ0(0, v) and β̂(v) = µ̂(1, v)− µ̂(0, v). Let

φ(Ξ, µ, ν, α) = α(D, ν(D,Z))
[
Y − µ(D, ν(D,Z))

]
+

[
∂[µ(1, v)− µ(0, v)]

∂vT
− α(D, ν(D,Z))

∂µ(D, v)

∂vT

] ∣∣∣
v=ν(D,Z)

[G(X)− ν(D,Z)].

Note ψ(Ξ, µ, ν, α) = m(Ξ, µ, ν)+φ(Ξ, µ, ν, α) and m(Ξ, µ, ν) = µ(1, ν(D,Z))−µ(0, µ(D,Z)). I use

the decomposition

ψ(Ξ, µ̂l, ν̂l, α̂l) = ψ(Ξ, µ0.ν0, α0)

+ β̂l(ν̂l(D,Z))− β0(V )

+ φ(Ξ, µ̂l, ν̂l, α0)− φ(Ξ, µ0, ν0, α0)

+ φ(Ξ, µ0, ν0, α̂l)− φ(Ξ, µ0, ν0, α0)

+ φ(Ξ, µ̂l, ν̂l, α̂l)− φ(Ξ, µ̂l, ν̂l, α0)− φ(Ξ, µ0, ν0, α̂l) + φ(Ξ, µ0, ν0, α0)

≡ ψ(Ξ, µ0, ν0, α0) +R1l +R2l +R3l +R4l.
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By the hypothesis, χ1,nω
2ζ/(2ζ+1)
n κ̃n+χn,2ω̃n = o(1) and ω

2ζ/(2ζ+1)
n κ̃n+(χ0,nχ2,n)

1/2ω̃n = o(n−1/4).

Then, Lemmas SA-5, SA-6, SA-7 imply
√
nE[R1l + R2l|Icl ] = oP(1), E[R3l|Icl ] = 0,

√
nE[R4l|Icl ] =

oP(1), and E[R2
jl|Icl ] = oP(1) for j = 1, 2, 3, 4 since nl/n’s are bounded away from zero. Then,

1√
n

L∑
l=1

∑
i∈Il

ψ(Ξi, µ̂l, ν̂l, α̂l) =
1√
n

n∑
i=1

ψ(Ξi, µ0, ν0, α0) + oP(1).

For consistency of the variance estimator, note

[
ψ(Ξ, µ̂l, ν̂l, α̂l)− θ̂n

]2
=
[
ψ(Ξ, µ0, ν0, α0)− θ0

]2
+
[
ψ(Ξ, µ̂l, ν̂l, α̂l)− ψ(Ξ, µ0, ν0, α0)

]2
+
[
θ̂n − θ0

]2 − 2
[
ψ(Ξ, µ̂l, ν̂l, α̂l)− ψ(Ξ, µ0, ν0, α0)

][
θ̂n − θ0

]
+ 2
[
ψ(Ξ, µ̂l, ν̂l, α̂l)− ψ(Ξ, µ0, ν0, α0)

][
ψ(Ξ, µ0, ν0, α0)− θ0

]
− 2
[
θ̂n − θ0

][
ψ(Ξ, µ0, ν0, α0)− θ0

]
and by the above argument and θ̂n = θ0 + oP(1),

Ψ̂n =
1

n

n∑
i=1

[
ψ(Ξ, µ0, ν0, α0)− θ0

]2
+ oP(1) = Ψ0 + oP(1).

A.4.1 Auxiliary lemmas

For reference later, I state a condition:

Condition SA-1. χℓ,n ≤ χℓ+1,n for ℓ = 0, 1, log(Kn)/ log(n) = O(1), and χ1,n(κn/ωn)ω
2ζ/(2ζ+1)
n +

ω̃nχ2,n + χ0,n/(n
1/4 logKn) + χ0,nω

(2ζ−1)/(2ζ+1)
n = o(1).

Notations Write η = G(X) − V where V = E[G(X)|D,Z]. For sequences an, bn, an ≲ bn

indicates that there exists a fixed constant C > 0 such that an ≤ Cbn where C does not dependent

on n. For a function f , ∂f(D,V ) = ∂f(D,V )/∂V T. For ℓ = 1, 2, ∥ · ∥ℓ is the ℓ-norm in Euclidean

spaces. ∥ · ∥L2 is the L2(P)-norm.

Using cross-fitting, I compute expectations conditional on observations not in Il. Thus, I treat

(µ̂l, ν̂l, α̂l) as if fixed when computing expectations. To save space, I write E[ · |Icl ] = El[ · ] and drop
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the subscript l from µ̂l, ν̂l, α̂l, Rjl when the risk of confusion is small.

Lemma SA-5. Under Assumptions 7-10 and Condition SA-1,

El[R1 +R2] = OP

(
ω̃n(κn/ωn)ω

2ζ/(2ζ+1)
n + χ2,nω̃

2
n

)
, El[R2

1] = oP(1), and El[R2
2] = oP(1).

Proof. Since R1l = β̂l(ν̂l(D,Z))− β0(V ), Lemma SA-8 implies El[R2
1] = oP(1). For R2,

R2 = α0(D, V̂ )[Y − µ̂(D, V̂ )]− α0(D,V )ε

+ [∂β̂(V̂ )− α0(D, V̂ )∂µ̂(D, V̂ )][G(X)− V̂ ]− [∂β0(V )− α0(D,V )∂µ0(D,V )]η

= [α0(D, V̂ )− α0(D,V )]ε+ α0(D, V̂ )[µ0(D,V )− µ̂(D, V̂ )]

+ [∂β̂(V̂ )− ∂β0(V )]η − [α0(D, V̂ )− α0(D,V )]∂µ̂(D, V̂ )η

+ [∂β̂(V̂ )− α0(D, V̂ )∂µ̂(D, V̂ )][V − V̂ ]− α0(D,V )[∂µ̂(D, V̂ )− ∂µ0(D,V )]η.

By the assumption, E[ε2|D,Z], α0, ∂µ0, ∂β0 and E[∥η∥22|D,Z] are all bounded and α0 is Lipschitz

continuous. Thus,

El[R2
2] ≲ ∥ν̂ − ν0∥2L2 +

∫
|µ̂(d, ν̂(d, z))− µ0(d, ν0(d, z))|2dFDZ(d, z)

+

∫
∥∂{β̂(ν̂(d, z))− β0(ν0(d, z))}∥22dFDZ(d, z)

+ χ2
1,n∥ν̂ − ν0∥2L2 +

∫
∥∂{µ̂(d, ν̂(d, z))− µ0(d, ν0(d, z))}∥22dFDZ(d, z) = oP(1)

where I used Lemmas SA-8 and SA-18.

For R1 +R2, note E[ε|D,Z] = 0 by Lemma SA-3. Then,

El[R1 +R2] = El[−β0(V ) + α0(D,V )µ0(D,V )] + El[β̂(V )− α0(D,V )µ̂(D,V )] (S-2)

+ El[{α0(D, V̂ )− α0(D,V )}{µ0(D,V )− µ̂(D, V̂ )}] (S-3)

− El[{α0(D, V̂ )− α0(D,V )}∂µ̂(D, V̂ ){V − V̂ }] (S-4)

+ El[α0(D,V ){µ̂(D,V )− µ̂(D, V̂ )− ∂µ̂(D, V̂ )(V − V̂ )}] (S-5)

− El[β̂(V )− β̂(V̂ )− ∂β̂(V̂ ){V − V̂ }]. (S-6)
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The right-hand side of (S-2) equals zero as E[α0(D,V )µ(D,V )] = E[m(Ξ, µ, ν0)] for any µ ∈

L2(FDV ); E[Dµ(D,V )/P[D = 1|V ]] = E[µ(1, V )] and E[(1−D)µ(D,V )/P[D = 0|V ]] = E[µ(0, V )].

For (S-3), the Cauchy-Schwartz inequality and Lemma SA-8 imply it isOP(ω̃n(κn/ωn)ω
2ξ/(2ξ+1)
n ).

For (S-4), Lemma SA-18 implies it is OP(χ1,nω̃
2
n).

For (S-5), write dF̃ (t, z) = α0(t, ν0(t, z))dFDZ(t, z). By Taylor expansion, for s̄ ∈ [0, 1] (depen-

dent on (t, z)),

(S-5) =

∫
(ν0(t, z)− ν̂(t, z))′

∂2ρ̂′q(t, s̄ν0(t, z) + (1− s̄)ν̂(t, z))

∂v∂vT
(ν0(t, z)− ν̂(t, z))dF̃ (t, z)

≲ max
1≤l,l′≤dim(V )

sup
t,v

|ρ̂′∂2q(t, v)/∂vl∂vl′ |∥ν̂ − ν0∥2L2 = OP(χ2,nω̃
2
n).

An analogous argument shows (S-6) = OP(χ2,nω̃
2
n).

Lemma SA-6. Under Assumptions 7-10 and Condition SA-1, El[R3] = 0 and El[R2
3] = oP(1).

Proof. Recall

R3 = α̂(D,V )ε+ [∂β0(V )− α̂(D,V )∂µ0(D,V )]η

− α0(D,V )ε+ [∂β0(V )− α0(D,V )∂µ0(D,V )]η.

Using E[ε|D,V ] = 0 and E[η|D,V ] = 0, El[R3] = 0 almost surely. Also,

R2
3 ≲ |α̂(D,V )− α(D,V )|2ε2 + |α̂(D,V )− α0(D,V )|2|∂µ0(D,V )η|2

and El[R2
3] = oP(1) follows from ∥α̂ − α0∥L2 = oP(1) and boundedness of E[ε2|D,Z], ∂µ0, and

E[∥η∥22|D,Z].

Lemma SA-7. Under Assumptions 7-10 and Condition SA-1,

El[R4] = OP(χ0,nχ2,nω̃
2
n + (κn/ωn)

2ω4ζ/(2ζ+1)
n ), and El[R2

4] = oP(1).

Proof. Note

R4 = [α̂(D, V̂ )− α0(D, V̂ )][Y − µ̂(D, V̂ )]− [α̂(D, V̂ )− α0(D, V̂ )]∂µ̂(D, V̂ )[G(X)− V̂ ]−R3.

10



By Lemma SA-18, supd,v |µ̂(d, v)|+ supd,v |α̂(d, v)| = OP(χ0,n). Then,

El[(R4 +R3)
2] ≲

∫
|α̂(t, ν̂(t, z))− α0(t, ν0(t, z))|2dFDZ(t, z)[1 + χ0,n + χ1,n]

2

+ ∥ν̂ − ν0∥2L2 [1 + χ0,n + χ1,n]
2.

Thus, from Lemma SA-6, El[R2
4] = oP(1) holds. For the expectation, note El[R3] = 0 and

El[R4] = El
[
{α̂(D, V̂ )− α0(D, V̂ )}{µ̂(D,V )− µ̂(D, V̂ )− ∂µ̂(D, V̂ )(V − V̂ )}

]
+ El

[
{α̂(D, V̂ )− α0(D, V̂ )}{µ0(D,V )− µ̂(D,V )}

]
≤
(
sup
d,v

|α̂(d, v)|+ C
)
El
[
|µ̂(D,V )− µ̂(D, V̂ )− ∂µ̂(D, V̂ )(V − V̂ )|

]
+

√
El
[
{α̂(D, V̂ )− α0(D, V̂ )}2

]
El
[
{µ0(D,V )− µ̂(D,V )}2

]
where the first equality uses E[ε|D,Z] = 0 and E[η|D,Z] = 0. Using supd,v |α̂(d, v)| = OP(χ0,n),

calculations similar to those in Lemma SA-5 imply El[R4] = OP(χ0,nχ2,nω̃
2
n + (κn/ωn)

2ω
4ζ/(2ζ+1)
n ).

Convergence rates of Lasso estimators

Lemma SA-8. Suppose Assumptions 7-10 and SA-1 hold. For s ∈ {0, 1},

∫ ∣∣µ̂(s, ν̂(t, z))− µ0(s, ν0(t, z))
∣∣2dFDZ(t, z) = OP

(
(κn/ωn)

2ω4ζ/(2ζ+1)
n

)
,

∫ ∣∣µ̂(t, ν̂(t, z))− µ0(t, ν0(t, z))
∣∣2dFDZ(t, z) = OP

(
(κn/ωn)

2ω4ζ/(2ζ+1)
n

)
,

∫ ∣∣α̂(t, ν̂(t, z))− α0(t, ν0(t, z))
∣∣2dFDZ(t, z) = OP

(
(κn/ωn)

2ω4ζ/(2ζ+1)
n

)
.

∫ ∥∥∥ ∂

∂vT
{
µ̂(s, ν̂(t, z))− µ0(s, ν0(t, z))

}∥∥∥
2
dFDZ(t, z) = oP(1).

Proof. First define some notations. Let s0 = ⌊Cω−2/(2ζ+1)
n ⌋ and let ρ̃ be a vector as defined in the

11



assumption 10 for s = s0. Then,

∥ρ̄− ρ̃∥22 ≤ Cs−2ζ
0 ≤ Cω2ζ/(2ζ+1)

n . (S-7)

Let J0 be the indices of nonzero elements of ρ̃. Note |J0| = s0. Also, define

ρ∗ ∈ argmin
ρ

{
(ρ− ρ̄)TΩ(ρ− ρ̄) + 2ωn

∑
j∈{1,...,2Kn}\J0

|ρj |
}

and J∗ to be the set of indices of nonzero elements of ρ∗.

Below I prove the first display in the statement of the lemma. The second and the third displays

follow from identical arguments. By adding and subtracting µ̂(s, ν0(t, z)) = q(s, ν0(t, z))
Tρ̂,

∫ ∣∣µ̂(s, ν̂(t, z))− µ0(s, ν0(t, z))
∣∣2dFDZ(t, z)

≤ 2

∫ ∣∣µ̂(s, ν̂(t, z))− µ̂(s, ν0(t, z))
∣∣2dFDZ(t, z) + 2

∫ ∣∣µ̂(s, v)− µ0(s, v)
∣∣2dFV (v)

and for the first term after the inequality, Assumption 8 and Lemma SA-18 below imply

∫ (
{q(s, ν̂(t, z))− q(s, ν0(t, z))}Tρ̂

)2
dFDZ(t, z)

≤ sup
v

∥∥∥∥ρ̂T∂q(s, v)∂vT

∥∥∥∥2
2

∫ ∥∥∥ν̂(d, z)− ν0(d, z)
∥∥∥2
2
dFDZ(d, z) = OP

(
ω2
n

)
.

By the triangle inequality,

∥µ̂(s, ·)− µ0(s, ·)∥L2 ≤ ∥µ̂(s, ·)− ρT∗ q(s, ·)∥L2 + ∥ρT∗ q(s, ·)− ρ̄Tq(s, ·)∥L2 + ∥ρ̄Tq(s, ·)− µ0(s, ·)∥L2

where ∥ρ̄Tq(s, ·)− µ0(s, ·)∥L2 = o(n−1/4) by Assumption 10. Let

Ω̃(s) =

 1 s

s s

⊗ E[p(V )p(V )T].

12



Since the largest eigenvalue of E[p(V )p(V )T] is uniformly bounded,

∥q(s, ·)T(ρ̂− ρ∗)∥2L2 = (ρ̂− ρ∗)
TΩ̃(s)(ρ̂− ρ∗) ≤ C∥ρ̂− ρ∗∥22 = OP

(
(κn/ωn)

2ω4ζ/(2ζ+1)
n

)
where the last equality uses Lemma SA-17 below. Also, Lemmas SA-12 and SA-17 below imply

∥q(s, ·)T(ρ∗ − ρ̄)∥2L2 ≤ Cω
2ζ/(2ζ+1)
n . Then,

∥µ̂− µ0∥L2 = OP

(
(κn/ωn)ω

2ζ/(2ζ+1)
n

)
+ o
(
n−1/4

)
.

Lemmas for Lasso estimators I use some of lemmas in CNS and Bradic et al. (2022). For ease

of reference, I collect them here.

Lemma SA-9 (Lemma A2 CNS). Under Assumptions 9-10, (ρ̄− ρ∗)
TΩ(ρ̄− ρ∗) ≤ Cω

4ζ/(2ζ+1)
n .

Lemma SA-10 (Lemma A3 CNS). Under Assumptions 9-10, #|J∗| ≤ Cω
−2/(2ζ+1)
n .

Lemma SA-11 (Lemma C1 Bradic et al. (2022)). Consider a ∈ Rp such that ∥a − bs∥2 ≤ Cs−r

for any s ≥ 0, where C, r > 0 are constants and bs = argmin∥v∥0≤s ∥a − v∥2 where ∥ · ∥0 is the

number of non-zero elements of the argument. If r > 1/2 and s ≥ 2, then ∥a − bs∥1 ≤ Ds1/2−r

where D > 0 is a constant depending only on C and r.

I establish additional lemmas to characterize the convergence rates of the Lasso estimators.

Lemma SA-12. Under Assumptions 9-10, ∥ρ∗ − ρ̃∥2 ≤ Cω
2ζ/(2ζ+1)
n and ∥ρ∗ − ρ̄∥2 ≤ Cω

2ζ/(2ζ+1)
n .

Proof. Let J1 = J0∪J∗ and note that ∥(ρ∗)J1∥2 = ∥(ρ∗)∥2, ∥ρ̄J1∥2 = ∥ρ̄∥2. Then, 0 = ∥(ρ∗−ρ̃)Jc1∥2 ≤

3∥(ρ∗ − ρ̃)J1∥2 trivially holds. Lemma SA-10 implies #|J1| ≤ Cω
−2/(2ζ+1)
n . By Assumption 9,

∥ρ∗ − ρ̃∥22 ≤ C(ρ∗ − ρ̃)′Ω(ρ∗ − ρ̃) ≤ 2C(ρ∗ − ρ̄)′Ω(ρ∗ − ρ̄) + 2C(ρ̃− ρ̄)′Ω(ρ̃− ρ̄)

and the last two terms can be bounded by Cω
4ζ/(2ζ+1)
n by Lemma SA-9 and (S-7).

For the other conclusion, ∥ρ∗ − ρ̄∥2 ≤ ∥ρ∗ − ρ̃∥2 + ∥ρ̃− ρ̄∥2 ≤ Cω
2ζ/(2ζ+1)
n .

Lemma SA-13. If Assumptions 9-10 hold, then ∥ρ∗ − ρ̄∥1 ≤ Cω
(2ζ−1)/(2ζ+1)
n .

13



Proof. By ∥ρ̄− ρ̃∥2 ≤ Cs−ζ and using the argument of Lemma SA-11,

∥ρ̄Jc0∥1 ≤ Cs
1/2−ζ
0 ≤ Cω(2ζ−1)/(2ζ+1)

n .

Let J1 = J0 ∪ J∗ and note that Jc1 ⊂ Jc∗ and Jc1 ⊂ Jc0 . Then,

∥(ρ∗)Jc1 − ρ̄Jc1∥1 = ∥ρ̄Jc1∥1 ≤ ∥ρ̄Jc0∥1.

By Lemma SA-10, #|J1| ≤ #|J∗|+#|J0| ≤ Cω
−2/(2ζ+1)
n + s0 ≤ Cω

−2/(2ζ+1)
n . Therefore,

∥ρ∗ − ρ̄∥1 = ∥(ρ∗)J1 − ρ̄J1∥1 + ∥(ρ∗)Jc1 − ρ̄Jc1∥1 ≤ ∥(ρ∗)J1 − ρ̄J1∥1 + ∥ρ̄Jc0∥1

≤
√
#|J1|∥(ρ∗)J1 − ρ̄J1∥2 + Cω(2ζ−1)/(2ζ+1)

n

≤ Cω−1/(2ζ+1)
n ∥ρ∗ − ρ̄∥2 + Cω(2ζ−1)/(2ζ+1)

n

≤ Cω(2ζ−1)/(2ζ+1)
n

where the last inequality follows from Lemma SA-12.

Lemma SA-14. If Assumptions 9-10 hold, ∥ρ̄∥1 and ∥ρ∗∥1 are uniformly bounded.

Proof. If max1≤l≤2Kn |ρ̄l| ≤ C holds, then the conclusion follows by Lemma SA-11 since ∥ρ̄∥1 ≤

∥ρ̄−b2∥1+∥b2∥1 ≤ C where bs is as defined in Lemma SA-11 and b2 has only two non-zero elements

which are the two largest elements of ρ̄.

Now to show max1≤l≤2Kn |ρ̄l| ≤ C, note ∥(ρ∗)J∗∥2 = ∥ρ∗∥2, and thus, ∥(ρ∗)Jc∗∥2 ≤ 3∥(ρ∗)J∗∥2.

Using Assumption 10,

ρT∗ ρ∗ ≤ CρT∗Ωρ∗ ≤ C

where the last equality holds because E[|q(D,V )T(ρ̄ − ρ∗)|2] = o(1) by Lemma SA-9, and by ρ̄

being coefficients of least squares projection, E[|q(D,V )Tρ̄|2] ≤ E[µ0(D,V )2] < ∞. Since L2 norm

of ρ∗ is uniformly bounded, max1≤l≤2Kn |ρ∗l| ≤ C. By Lemma SA-13, ∥ρ∗ − ρ̄∥1 = o(1) and

max1≤l≤2Kn |ρ̄l| ≤ C follows.

By the triangle inequality, ∥ρ∗∥1 ≤ ∥ρ∗ − ρ̄∥1 + ∥ρ̄∥1 ≤ C also holds.
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Lemma SA-15. Assumptions 7, 9, and 10 hold. If χ0,nω
(2ζ−1)/(2ζ+1)
n = o(1), then |q(t, v)Tρ∗| is

uniformly bounded.

Proof. By Lemma SA-13, supv |q(t, v)Tρ∗ − q(t, v)Tρ̄| ≤ Cχ0,nω
(2ζ−1)/(2ζ+1)
n = o(1), and by As-

sumption 10, supv |µ0(t, v)− q(t, v)Tρ̄| = o(1). Since µ0 is bounded by the hypothesis, the desired

result holds.

Given a vector A ∈ RL, let ∥A∥∞ = max1≤l≤L |al|. Also, define Mµ = E[q(D,Z)Y ].

Lemma SA-16. Suppose Assumptions 7-10 hold. If log(Kn)/ log(n) = O(1), χ0,n ≤ χ1,n, and

χ0,n/(n
1/4 logKn) + χ0,nω

(2ζ−1)/(2ζ+1)
n = o(1), then

∥Ω̂ρ∗ − Ωρ∗∥∞ = OP(ωn), ∥M̂µ
n −Mµ∥∞ = OP(ωn).

Proof. I first prove ∥M̂µ
n −Mµ∥∞ = OP(ωn). Let M̄

µ
n = n−1

∑n
i=1 q(Di, Vi)Yi. With X = q(D,V ),

Y = Y , and s = 4, Lemma SA-19 implies

∥M̄µ
n −Mµ∥∞ = OP

(
χ0,n log(Kn)√

n

)
.

It remains to bound ∥M̂µ
n − M̄µ

n ∥∞.

∥M̂µ
n − M̄µ

n ∥∞ = max
1≤l≤2Kn

∣∣∣∣ 1n
n∑
i=1

[
q(Di, V̂i)− q(Di, Vi)

]
Yi

∣∣∣∣
≤ C max

1≤l≤dim(V )
sup
v

∥∥∥∥∂p(v)∂vl

∥∥∥∥
∞

1

n

n∑
i=1

∥V̂i − Vi∥1|Yi|.

and

E
[
∥M̂µ

n − M̄µ
n ∥∞

]
≤ Cχ1,n

∣∣∣∣ ∫ ∥ν̂n(t, z)− ν0(t, z)∥22dFDZ(t, z)E[Y 2]

∣∣∣∣1/2 = OP
(
χ1,nω̃n

)
where the expectation is conditional on observations used to estimate ν̂n, which are independent

of the observations used to form the sum.

Now consider Ω̂nρ∗. Let Ω̄n = n−1
∑n

i=1 q(Di, Vi)q(Di, Vi)
T. By Lemma SA-15, q(D,V )Tρ∗ is
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uniformly bounded, and thus, with X = q(D,V ) and Y = q(D,V )Tρ∗, Lemma SA-19 implies

∥Ω̄nρ∗ − Ωρ∗∥∞ = OP

(
χ0,n log(Kn)√

n

)
.

Now,

∥Ω̂nρ∗ − Ω̄nρ∗∥∞ ≤ max
1≤l≤2Kn

∣∣∣∣ 1n
n∑
i=1

[
ql(Di, V̂i)− ql(Di, Vi)

]
q(Di, V̂i)

Tρ∗

∣∣∣∣
+ max

1≤l≤2Kn

∣∣∣∣ 1n
n∑
i=1

ql(Di, Vi)
[
q(Di, V̂i)− q(Di, Vi)

]T
ρ∗

∣∣∣∣
≤ C max

1≤ℓ≤dim(V )
sup
v

∥∥∥∥∂p(v)∂vℓ

∥∥∥∥
∞

1

n

n∑
i=1

∥V̂i − Vi∥1
∣∣q(Di, V̂i)

Tρ∗
∣∣

+ C max
1≤ℓ≤dim(V )

sup
v

∣∣∣∣∣∂p(v)∂vℓ

T

ρ∗

∣∣∣∣∣ max
1≤l≤2Kn

∣∣∣∣∣ 1n
n∑
i=1

∥V̂i − Vi∥1|ql(Di, Vi)|

∣∣∣∣∣ .
The first term of the right-hand side is OP(ωn) using the argument for M̂µ

n . For the other term,

∥ρ∗∥1 ≤ C by Lemma SA-14 and

max
1≤l≤2Kn

∣∣∣∣∣ 1n
n∑
i=1

∥V̂i − Vi∥1|ql(Di, Vi)|

∣∣∣∣∣ ≤ max
1≤l≤2Kn

E[∥V̂i − Vi∥1|ql(Di, Vi)|]

+ max
1≤l≤2Kn

∣∣∣∣∣ 1n
n∑
i=1

∥V̂i − Vi∥1|ql(Di, Vi)| − E[∥V̂i − Vi∥1|ql(Di, Vi)|]

∣∣∣∣∣
where the expectations are conditional on the observations used to construct ν̂, and the result

follows from Lemma SA-20 and E[∥V̂i − Vi∥1|ql(Di, Vi)|] ≤ C
√
E[∥V̂i − Vi∥21] = OP(ω̃n).

Lemma SA-17. Suppose Assumptions 7-10, log(Kn)/ log(n) = O(1), χ0,n ≤ χ1,n, and χ0,n/(n
1/4 logKn)+

χ0,nω
(2ζ−1)/(2ζ+1)
n = o(1). Then,

∥ρ̂− ρ∗∥1 = OP

(
(κn/ωn)ω

(2ζ−1)/(2ζ+1)
n

)
, ∥ρ̂− ρ∗∥2 = OP

(
(κn/ωn)ω

2ζ/(2ζ+1)
n

)
.

Proof. The result follows from the arguments of Lemma A6 of CNS and Lemma B7 of Bradic et al.

(2022).

Lemma SA-18. Suppose Assumptions 7-10, log(Kn)/ log(n) = O(1), χ0,n ≤ χ1,n, and χ0,n/(n
1/4 logKn)+
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χ0,nω
(2ζ−1)/(2ζ+1)
n = o(1). Then,

∥ρ̂∥1 = OP(1),

and for f̂ ∈ {µ̂, α̂},

sup
d,v

|f̂(d, v)| = OP(χ0,n), sup
d,v

∥∂f̂(d, v)/∂vT∥1 = OP(χ1,n).

Proof. The first result follows from Lemmas SA-14 and SA-17 since

∥ρ̂∥1 ≤ ∥ρ̂− ρ∗∥1 + ∥ρ∗∥1.

The second result follows from the first since ∂µ̂(d, v)/∂vT = ρ̂T∂q(d, v)/∂vT and ∥∂q(d, v)/∂vT∥1 =

O(χ1,n).

The following uniform convergence rate result builds on Lemma B.1 of Cattaneo et al. (2013).

Lemma SA-19. Let (Xi1, . . . , Xip, Yi) be i.i.d. across i and I write Xi = (Xi1, . . . , Xip)
T. For

some positive sequence ςn, max1≤i≤n,1≤j≤p |Xij | ≤ ςn, E[Y 2|X] ≤ C, E[Y s] < ∞ for some s ≥ 2,

max1≤j≤p E[X2
ij ] ≤ C, and ςn/n

1/2−1/s(log p)−1/2 = o(1). Letting Zij = XijYi − E[XijYi],

max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zij

∣∣∣∣ = OP

(√
log(p)

n
max

{
1, ςn

√
log(p)

n1−2/s

})
+ o
(
ςnn

−(s−1)/s
)
.

Proof. Let τn = n1/s and Yin = Yi1{|Yi| ≤ τn}.

Pr

[ n∑
i=1

XijYi ̸=
n∑
i=1

XijYin for some j

]
≤ Pr

[
max
1≤i≤n

|Yi| > τn

]
≤

n∑
i=1

Pr
[
|Yi| > τn

]
≤ nE

[
|Y |s1{|Y | > τn}

]
τ−1/s
n = o(1).

For the difference in the expectations,

∣∣E[XijYi]− E[XijYin]
∣∣ ≤ ςnE[|Y |1{|Y | > τn}] ≤ ςnτ

−(s−1)
n E[|Y |s1{|Y | > τn}] = o

(
ςnn

−(s−1)/s
)
.
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Now let Zijn = XijYin − E[XijYin] and for any c > 0,

Pr

[
max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zij

∣∣∣∣ > c

]
≤ Pr

[
max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zijn

∣∣∣∣ > c

]
+ Pr

[ n∑
i=1

XijYi ̸=
n∑
i=1

XijYin for some j

]
+ 1

{
max
1≤j≤p

∣∣E[XjY 1{|Y | > τn}]
∣∣ > c

}
≤ Pr

[
max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zijn

∣∣∣∣ > c

]
+ o(1)

+ 1

{
ςnn

−(s−1)/sE[|Y |s1{|Y | > τn}] > c
}
.

Thus, the desired result follows if max1≤j≤p | 1n
∑n

i=1 Zijn| = OP(ϱn) with

ϱn =

√
log(p)

n
max

{
1, ςn

√
log(p)

n1−2/s

}
.

Note E[Z2
ijn] ≤ 2E[X2

ijY
2
i ] = 2E[X2

ijE[Y 2
i |Xi]] ≤ CE[X2

ij ] ≤ C. Since max1≤i≤n |Zijn| ≤ 2τnςn,

Bernstein’s inequality implies that for any M > 0,

Pr

(
max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zijn

∣∣∣∣ > ϱnM

)
≤

p∑
j=1

Pr

(∣∣∣∣ n∑
i=1

Zijn

∣∣∣∣ > nϱnM

)

≤ 2 exp

(
log(p)− n(ϱnM)2/16

C + τnςnMϱn/6

)
.

Now, suppose lim supn
ς2n log(p)

n1−2/s <∞. Then, ϱn = O(
√
log(p)/n), and

exp

(
− n(ϱnM)2/16

C + τnςnϱnM/6

)
≤ exp

(
− M log(p)/16

CM−1 + τnςn
√

log(p)/n/6

)
≤ exp

(
−M log(p)/(C + 1)

)

where the last inequality uses τnςn
√
log(p)/n ≤ C.

Next, if lim infn
ς2n log(p)

n1−2/s > 0, then ϱn = O(ςn log(p)/n
1−1/s) and

exp

(
− n(ϱnM)2/16

C + τnςnϱnM/6

)
≤ exp

(
− Mς2n log(p)

2/16n1−2/s

CM−1 + ς2n log(p)/6n
1−2/s

)
= exp

(
− M log(p)/16

Cn1−2/s/(M log(p)ς2n) + 1/6

)
≤ exp

(
−M log(p)/(C + 1)

)
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where the last inequality uses lim supn
n1−2/s

ς2n log(p)
= (lim infn

ς2n log(p)

n1−2/s )
−1 < ∞. Thus, for both cases,

by taking M large enough,

Pr

(
max
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

Zijn

∣∣∣∣ > ϱnM

)
= o(1).

For general cases, arguing along subsequences and using the above two cases lead to the desired

result.

Lemma SA-20. Suppose Assumptions 7-8 hold. If ω̃n(log(Kn) + χ0,n) = O(1), then

max
1≤l≤2Kn

∣∣∣∣∣ 1n
n∑
i=1

∥V̂i − Vi∥1|ql(Di, Vi)| − E[∥V̂i − Vi∥1|ql(Di, Vi)|]

∣∣∣∣∣ = OP

(√
log(Kn)

n
+ χ0,nω̃n

)

where the expectations are computed conditional on observations used to estimate ν̂n, which are

independent of the observations used to form the sample mean.

Proof. The argument is analogous to the one for Lemma SA-19. In the notation of the lemma,

Yi = ∥V̂i−Vi∥1, Xij = |qj(Di, Vi)|. Let τn = Cn1/2ω̃n for some large C > 0, and nE[∥V̂i−Vi∥21]τ−2
n =

C−2OP(1). Also, E[|qj(Di, Vi)|∥V̂i−Vi∥11{∥V̂i−Vi∥1 > τn}] ≤ χ0,nω̃n. Letting Zijn = XijYi1{|Yi| ≤

τn}−E[XijYi1{|Yi| ≤ τn}], E[Z2
ijn] ≤ Cχ2

0,nOP(ω̃
2
n). Then, with C large enough, E[Z2

ijn] ≤ Cχ2
0,nω̃

2
n

occurs with probability close to one. On this event,

Pr

(
max

1≤j≤2Kn

∣∣∣∣ 1n
n∑
i=1

Zijn

∣∣∣∣ > M

√
log(Kn)

n

)
≤ 4 exp

(
log(Kn)−

M2 log(Kn)/16

Cχ2
0,nω̃

2
n + τnM

√
log(Kn)/n/6

)
≤ 4 exp

(
− log(Kn)

)
= o(1)

where the last equality holds if M and n are sufficiently large.

A.5 Flexible parametric estimation

Recall the setup

θ(d) = E[E[Y |D = d, V ]]

E[Y |D,V ] = Λ
(
p(D,V )′γ0

)
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E[G(X)|D,Z] = Q(D,Z)δ0.

Define the regression residuals ε = Y −E[Y |D,V ], η = G(X)−E[G(X)|D,Z]. I impose the following

conditions.

Condition SA-2. Let β = (δ, γ) and N = {β : ∥δ − δ0∥ ∨ ∥γ − γ0∥ ≤ η} for some η > 0.

(i) {Y (d) : d ∈ D} ⊥⊥ (D,Z)|X∗.

(ii) Λ is strictly monotone and twice continuously differentiable with bounded derivatives, and p

is continuously differentiable in V .

(iii) The matrices Γ2 = E[Λ̇(p(D,V )′γ0)p(D,V )p(D,V )′], Γ1 = E[Q(D,Z)′Q(D,Z)] are non-

singular where Λ̇ denotes the first derivative of Λ.

(iv) E[supβ∈N ∥{Y−Λ(p(D,Q(D,Z)δ)′γ)}p(D,Q(D,Z)δ)∥2], E[supβ∈N ∥Q(D,Z)′(X−Q(D,Z)δ)∥2],

E[supβ∈N |Λ(p(D,Q(D,Z)δ)′γ)|2], E[supβ∈N ∥p(D,Q(D,Z)δ)p(D,Q(D,Z)δ)′∥], and

E[supβ∈N |Y − Λ(p(D,Q(D,Z)δ)′γ)|{∥p(D,Q(D,Z)δ)∥ + 1}∥∂p(D,Q(D,Z)δ)
∂V ′ Q(D,Z)∥] are all

finite.

Theorem SA-1. Under Assumption SA-2, the flexible parametric estimator satisfies

√
n
(
θ̂n(d)− θ(d)

)
⇝ Normal(0,Ψ(d))

where

Ψ(d) = Var
[
Λ(p(d, V )′γ0)− θ(d) + c1(d)Γ

−1
2 P Λ̇(P ′γ0)ε+ {c1(d)Γ−1

2 Γ3 + c2(d)}Γ−1
1 Q′ζ

]
,

P = p(D,V ), Q = Q(D,Z), and

c1(d) = E[Λ̇(p(d, V )′γ0)p(d, V )′]

c2(d) = E
[
Λ̇(p(d, V )′γ0)γ

′
0

∂p(d, V )

∂V ′ Q
]

Γ3 = −E
[
|Λ̇(P ′γ0)|2Pγ′0

∂p(D,V )

∂V ′ Q
]
.

In addition, the variance estimator in the main paper is consistent for Ψ(d).
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A.5.1 Proof

In the sequel, I refer to Newey and McFadden (1994) as NM. Note that δ̂n →P δ0 follows from

standard arguments. Using Lemma 2.4 of NM, one can show γ̂n →P γ0 and θ̂n(d) →P θ(d). Then,

asymptotic normality follows from Theorem 6.1 of NM where the moment function is


Q(D,Z)′(X −Q(D,Z)δ)

{Y − Λ(p(D,Q(D,Z)δ)′γ)}Λ̇(p(D,Q(D,Z)δ)′γ)p(D,Q(D,Z)δ)

Λ(p(d,Q(D,Z)δ)′γ)− θ

 .

The derivative of this moment condition with respect to (δ, γ, β) is


−Q(D,Z)′Q(D,Z) 0 0

φ1(Y,D,Z, δ, γ) φ2(Y,D,Z, δ, γ) 0

Λ̇(p(d,Q(D,Z)δ)′γ)γ′ ∂p(d,Q(D,Z)δ)
∂V ′ Q(D,Z) Λ̇(p(d,Q(D,Z)δ)′γ)p(d,Q(D,Z)δ)′ −1


where

φ1(Y,D,Z, δ, γ) =
[
{Y − Λ(p(D,Q(D,Z)δ)′γ)}Λ̈(p(D,Q(D,Z)δ)′γ)−

∣∣Λ̇(p(D,Q(D,Z)δ)′γ)
∣∣2]

× p(D,Q(D,Z)δ)γ′
∂p(D,Q(D,Z)δ)

∂V ′ Q(D,Z)

+ {Y − Λ(p(D,Q(D,Z)δ)′γ)}Λ̇(p(D,Q(D,Z)δ)′γ)
∂p(D,Q(D,Z)δ)

∂V ′ Q(D,Z),

φ2(Y,D,Z, δ, γ) =
[
{Y − Λ(p(D,Q(D,Z)δ)′γ)}Λ̈(p(D,Q(D,Z)δ)′γ)−

∣∣Λ̇(p(D,Q(D,Z)δ)′γ)
∣∣2]

× p(D,Q(D,Z)δ)p(D,Q(D,Z)δ)′,

and Λ̈ is the second derivatives of Λ. By the formula given in NM, the asymptotic linear represen-

tation of θ̂n(d) is

√
n
(
θ̂n(d)− θ(d)

)
=

1√
n

n∑
i=1

{Λ(p(d, V )′γ0)− θ(d)}

− 1√
n

n∑
i=1

G12G
−1
11

 Q(Di, Zi)
′ζi

p(Di, Vi)Λ̇(p(Di, Vi)
′γ0)εi

+ oP(1)
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where

G12 =

[
E
[
Λ̇(p(d, V )′γ0)γ

′
0
∂p(d,V )
∂V ′ Q(D,Z)

]
E
[
Λ̇(p(d, V )′γ0)p(d, V )′

] ]
and

G11 =

 −E[Q(D,Z)′Q(D,Z)] 0

E[φ1(Y,D,Z, δ0, γ0)] E[φ2(Y,D,Z, δ0, γ0)]

 .
Using the block matrix inverse formula,

−G12G
−1
11

 Q(Di, Zi)
′ζi

p(Di, Vi)Λ̇(p(Di, Vi)
′γ0)εi


= E

[
Λ̇(p(d, V )′γ0)γ

′
0

∂p(d, V )

∂V ′ Q(D,Z)
]
E[Q(D,Z)′Q(D,Z)]−1Q(Zi, Di)

′ζi

+ E[Λ̇(p(d, V )′γ0)p(d, V )′]E[|Λ̇(p(D,V )′γ0)|2p(D,V )p(D,V )′]−1p(Di, Vi)Λ̇(p(Di, Vi)
′γ0)εi

+ E[Λ̇(p(d, V )′γ0)p(d, V )′]E[|Λ̇(p(D,V )′γ0)|2p(D,V )p(D,V )′]−1E[φ1(Y,D,Z, δ0, γ0)]

× E[Q(D,Z)′Q(D,Z)]−1Q(Zi, Di)
′ζi.

Consistency of the variance estimator follows from repeated applications of Lemma 4.3 of NM.

B Multi-valued treatment variables

In the main paper, I use estimation of grade retention effects as a running example, in which the

treatment variable of interest is binary. Here, I discuss how the assumptions for Theorem 1 change

with multi-valued treatment.

Replacing d ∈ {0, 1} with d ∈ D = supp(D), Assumptions 1, 2, 3, and 5 remain unchanged. For

Assumption 4, the condition is modified as:

Condition SA-3. Let X = supp(X) and V = {fX|DZ(x|D,Z) : x ∈ X}. The conditional support

of V given D = d, supp(V|D = d), equals the marginal support supp(V) for almost all d ∈ D.

Recall that the support of a random element in L2(λ), say U, can be defined as

supp(U) =
{
x ∈ L2(λ) : P[U ∈ Ox] > 0 for any open Ox containing x

}
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where L2(λ) is equipped with the norm topology.

The formal assumption above may not be intuitive, but it is the same type of restriction as to

the common support condition in the control function literature (e.g., Imbens and Newey, 2009,

Assumption 2). Similar to the binary treatment case discussed in the main paper, Assumption

SA-3 essentially imposes that the conditional distribution of the proxy given (D,Z) satisfy some

index restrictions: there exist fixed functions f, ψ such that

fX|DZ(X|D,Z) = f(X,ψ(D,Z)) a.s.

Then, Assumption SA-3 holds if for each d ∈ supp(D), supp(ψ(D,Z)|D = d) = supp(ψ(D,Z)).

To give an example where Assumption SA-3 holds, consider the following random coefficient

model

D = η1Z1 + η2Z2

where the excluded variable Z = (Z1, Z2)
T is two-dimensional and η = (η1, η2)

T may be correlated

with X∗, causing the endogeneity issue. Assume Z ⊥⊥ (X∗, η) i.e., Z is an instrument for D.1

Then, the conditional distribution of X∗ given (D,Z) = (d, z) is determined by the index ψ(d, z) =

(d/z1, z2/z1) (for simplicity, Z1 = 0 is a probability zero event). Then, under Assumption 2,

the index restriction holds. Now, Assumption SA-3 holds if for each d̃ ∈ supp(D) and (d, z) ∈

supp(D,Z), there exists z̃ ∈ supp(Z|D = d̃) such that (d/z1, z2/z1) = (d̃/z̃1, z̃2/z̃1).

Two points should be noted. First, the above example again requires the large support of

Z, analogous to the existing literature of control function methods. Secondly, the above random

coefficient model cannot be handled using the existing control function methods, such as Imbens

and Newey (2009), because the first-stage equation is not invertible in the unobserved heterogeneity.

C Comparison with proximal control/proxy control approaches

My identifying assumptions are closely related to those used by Deaner (2018); Miao et al. (2018),

and some comparison may be warranted. I focus on their results using the outcome equation, and

I refer to them as integral equation approaches, to contrast with my control function approach. I

1Even with the availability of valid instruments, causal effects might not be identified with existing approaches if
the outcome of interest is a non-separable function of X∗.
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should note that Deaner (2018) also developed a method based on re-weighting of the outcome vari-

able, which is related to the integral equation approach but does not exactly fit into the discussion

that follows.

Both my method and the integral equation approach impose Assumptions 1, 2, and 3. The

main difference is Assumption SA-3. In the integral equation approach, instead of Assumption

SA-3, the identifying assumptions are:

Condition SA-4. Let D = supp(D). Given d ∈ D, define the operator

Πd : L
2(FX|D=d) 7→ L2(FZ|D=d), Πd(h)(z) = E[h(X)|D = d, Z = z]

Assume this linear operator Πd is compact, and denote the singular values by {πj,d}j≥1 and associ-

ated singular-value functions {vj,d}j≥1 ⊂ L2(FX|D=d), {uj,d}j≥1 ⊂ L2(FZ|D=d). See Theorem 15.16

of Kress (2014). Write πj(d) ≡ πj,d, vj(d, x) ≡ vj,d(x), and uj(d, z) ≡ uj,d(z). Assume

∞∑
j=1

1

πj(d)2
E
[
E[Y |D,Z]uj(D,Z)

∣∣D = d
]2
<∞.

Condition SA-5. For any b ∈ L2(FX∗) and d ∈ D, P[E[b(X∗)|D,Z] = 0|D = d] = 1 implies

E[b(X∗)|D] = 0 with probability one.

Assumption SA-5 is a weak version of a completeness condition. For reference, a standard com-

pleteness conditional on D is

Condition SA-6. For any b ∈ L2(FX∗) and d ∈ D, Pr[E[b(X∗)|D,Z] = 0|D = d] = 1 implies

b(X∗) = 0 with probability one.

Since this completeness implies Assumption SA-5, I refer to the latter as a weak version of com-

pleteness.

Deaner (2018) used a standard completeness condition rather than Assumption SA-5. Miao

et al. (2018) similarly imposed a standard completeness condition on X given (D,Z). Yet, for the

integral equation approach, the weak version of Assumption SA-5 suffices for the identification of

the average structural functions (and its conditional version given D).2

2An anonymous referee pointed out this sufficiency of the weak version of completeness conditions. They also
proved and shared a version of Lemma SA-21 in a report. I thank them for very helpful feedback.
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The following result shows that Assumption SA-5 follows from the assumptions imposed by the

control function method.

Lemma SA-21. Suppose Assumptions 2-3, the index restriction (3) in the main paper, and As-

sumption SA-3 hold. Suppose also that there is a measurable selection from the set {z ∈ supp(Z|D =

d) : ψ(d, z) = v} for each (d, v) ∈ supp(D,ψ(D,Z)). Then, Assumption SA-5 holds.

Proof. As shown in the proof of Theorem 1,

fX∗|DZ(x
∗|D,Z)

fX∗(x∗)
= Π†

(
fX|DZ(·|D,Z)

fX(·)

)
(x∗)

for some fixed mapping Π†. By the hypothesis, for each d̃ ∈ D, there exists a measurable mapping

s : D × supp(ψ(D,Z)) → supp(Z|D = d̃) such that

fX|DZ(x|D,Z)
fX(x)

=
f(x, ψ(d̃, s(ψ(D,Z), d̃)))

fX(x)
∀x s.t. fX(x) > 0

holds almost surely. Then,

fX∗|DZ(x
∗|D,Z) = fX∗|DZ(x

∗|d̃, s(ψ(D,Z), d̃)) ∀x∗ s.t. fX∗(x∗) > 0

with probability one. Now, suppose that with FZ|D=t probability one,

0 = E[b(X∗)|D = t, Z] =

∫
b(x∗)fX∗|DZ(x

∗|t, Z)dλ∗(x∗). (S-8)

Then,
∫
b(x∗)fX∗|DZ(x

∗|D,Z)dx∗ = 0 holds with probability one; otherwise,

0 ̸=
∫
b(x∗)fX∗|DZ(x

∗|D,Z)dx∗ =
∫
b(x∗)fX∗|DZ(x

∗|t, s(ψ(D,Z), t))dλ∗(x∗)

with some positive probability. That is, there exists a positive probability set A ⊆ supp(Z|D = t)

such that ∫
b(x∗)fX∗|DZ(x

∗|t, z)dλ∗(x∗) ̸= 0 ∀z ∈ A

but this contradicts the hypothesis (S-8). Therefore, if
∫
b(x∗)fX∗|DZ(x

∗|t, Z)dx∗ = 0 holds with

FZ|D=t probability one, then E[b(X∗)|D] = 0 almost surely follows.

25



The hypothesis of the existence of a measurable selection may be deemed as a mild regularity

condition as smoothness of (d, z) 7→ ψ(d, z) implies such condition.

Given the above result, the main difference in the control function approach and the integral

equation approach is Assumption 4 versus Assumption SA-4. This is indeed the key distinction

because of the two results in the next section. First, I show that one can achieve the identification

by replacing Assumption 4 with Assumption SA-5 and a high-level condition that is analogous to

Assumption SA-4. Second, I show that in some model, Assumption SA-4 fails while Assumptions

1-4 hold.

C.1 Replacing the common support condition

As in Lemma SA-3, under Assumptions 1-5 and {Y (d) : d ∈ D} ⊥⊥ (D,Z)|X∗,

E[Y |D = d, Z] =
∞∑
j=1

τ−1
j E[E[Y (d)|X∗]ϕj(X

∗)]

∫
fX|DZ(x|d, Z)φj(x)dλ(x).

Suppose we impose the following condition

∞∑
j=1

1

τ2j
E[E[Y (d)|X∗]ϕj(X

∗)]2 <∞, (S-9)

which is analogous to Assumption SA-4. With this condition imposed, the infinite sum and the

integral with respect to x in the above display can be interchanged to obtain

E[Y |D = d, Z] =

∫ ( ∞∑
j=1

τ−1
j E[E[Y (d)|X∗]ϕj(X

∗)]φj(x)

)
fX|DZ(x|d, Z)dλ(x)

≡ E[B(d,X)|D = d, Z]

where the function B is what Miao et al. (2018) calls a bridge function. With Assumption SA-5,

the ASF can be identified via E[B(d,X)]. Note that the above identification argument did not use

Assumption 4 and thus (S-9) can replace Assumption 4 (along with Assumption SA-5) to achieve

the identification. Yet, as discussed in the main paper, verifying a high-level condition like (S-9)

seems difficult in practice.
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C.2 Counterexample

I show that the high-level condition of the integral equation (Assumption SA-4) fails to hold in the

following simple example.

Y = 1{βD ≥ X∗}, X = X∗ + Ux, Z = X∗ + Uz

where  X∗

D

 ∼ Normal


 0

0

 ,
 σ2x σxσdρ

σxσdρ σ2d


 ,

(X∗, D) ⊥⊥ (Ux, Uz), Ux ⊥⊥ Uz, and Ux, Uz each follows a standard normal distribution. We have

(X,Z)|D ∼ Normal


 σx

σd
ρD

σx
σd
ρD

 ,
 (1− ρ2)σ2x + 1 (1− ρ2)σ2x

(1− ρ2)σ2x (1− ρ2)σ2x + 1


 .

In the notation of Assumption SA-4, we can take (see e.g., Carrasco et al., 2007)

uj(d, z) =
1√
j!
Hej

(
z − σx

σd
ρd

(1− ρ2)σ2x + 1

)
, πj(d) =

(
(1− ρ2)σ2x

(1− ρ2)σ2x + 1

)j

where Hej(·) is the jth order Hermite polynomial. For reference, let ς = (1−ρ2)σ2
x

(1−ρ2)σ2
x+1

so πj(d) = ςj .

For the outcome, note


X∗

D

Z

 =


1 0 0

0 1 0

1 0 1



X∗

D

Uz

 ∼ Normal




0

0

0

 ,


σ2x σxσdρ σ2x

σxσdρ σ2d σxσdρ

σ2x σxσdρ σ2x + 1




and X∗|D,Z ∼ Normal( ςρ
(1−ρ2)σxσd

D + ςZ, ς). Thus,

E[Y |D,Z] = Φ

(
1
√
ς

[
β − σxρ/σd

(1− ρ2)σ2x + 1

]
D −

√
ςZ

)
≡ Φ

(
β̄D −

√
ςZ
)
.

Computing inner products

∫
Φ(a+ bz)Hej

(
z − µ

σ

)
σ−1ϕ

(
z − µ

σ

)
dz =

∫
Φ(a+ bµ+ bσt)Hej(t)ϕ(t)dt.
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For j ≥ 1, using integration by part,

∫
Φ(ã+ b̃t)Hej(t)ϕ(t)dt = −Φ(ã+ b̃t)Hej−1(t)ϕ(t)

∣∣∣∞
−∞

+ b̃

∫
ϕ(ã+ b̃t)Hej−1(t)ϕ(t)dt

=
b̃

2π
exp

( −ã2

2(b̃2 + 1)

)∫
exp

(
− (b̃2 + 1)

2

(
t+

ãb̃

b̃2 + 1

)2)
Hej−1(t)dt

where I used that d
dx(Hej−1(x) exp(−x2/2)) = (−1)Hej(x) exp(−x2/2).

Now for some constants γ > 1, δ,

∫
exp

(
− γ

2
(t+ δ)2

)
Hej(t)dt

=
1
√
γ

∫
exp

(
− s2

2

)
Hej

( s
√
γ
− δ
)
ds

=
1
√
γ

∫
exp

(
− s2

2

) j∑
k=0

(
j

k

)
(−δ)j−kHek

( s
√
γ

)
ds

=
1
√
γ

∫
exp

(
− s2

2

) j∑
k=0

(
j

k

)
(−δ)j−k

⌊k/2⌋∑
i=0

γ−k/2+i(γ−1 − 1)i
(
k

2i

)
(2i)!

i!
2−iHek−2i(s)ds

=

√
2π

γ

⌊j/2⌋∑
k=0

(
j

2k

)
(−δ)j−2k(γ−1 − 1)k

(2k)!

k!
2−k

=

√
2π

γ

⌊j/2⌋∑
k=0

(
j

2k

)
(−1)j−kδj−2k

(
γ

γ − 1

)−k (2k)!

k!
2−k

=

√
2π

γ
(−1)j

(
γ − 1

γ

)j/2
j!

⌊j/2⌋∑
k=0

(−1)k

k!(j − 2k)!
δj−2k

(
γ

γ − 1

)j/2−k
2−k

=

√
2π

γ
(−1)j

(
γ − 1

γ

)j/2
Hej

(
δ

√
γ

γ − 1

)
.

Putting all together, with µd =
σx
σd
ρd, s2 = (1− ρ2)σ2x + 1

E
[
E[Y |D,Z]uj+1(D,Z)

∣∣D = d
]
=

1√
(j + 1)!

∫
Φ(β̄d−

√
ςz)Hej+1

(
z − µd
s

)
s−1ϕ

(
z − µd
s

)
dz

=
b̃(−1)j√

2πγ(j + 1)!
exp

(
−ã2

2(b̃2 + 1)

)(
γ − 1

γ

)j/2
Hej

(
δ

√
γ

γ − 1

)
.
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where ã = (β̄ −√
ς σxσd ρ)d, b̃ = −

√
ς(1− ρ2)σ2x + ς,

γ = ς[(1− ρ2)σ2x + 1] + 1 = (1− ρ2)σ2x + 1, and δ = −d[β̄ −√
ςσxρ/σd]

√
ς√

(1− ρ2)σ2x + 1
.

Asymptotics Using (8.22.8) in Szegő (1975, p.200),

Γ( j2 + 1)

Γ(j + 1)
e−x

2/42j/2Hej(x) = cos

(
x
√
j + 1/2− jπ

2

)
+

x3

12
√
2

(
2j + 1)−1/2 sin

(
x
√
j + 1/2− jπ

2

)
+O(j−1)

for j ∈ N. Then, for infinitely many n ∈ N, for some constants c1, c2 > 0,

E
[
E[Y |D,Z]u2n+1(D,Z)

∣∣D = d
]
≥ c1

(2n)!

n!2n
1√

(2n+ 1)!

(
γ − 1

γ

)n
= c1(2n+ 1)−1/2 (2n− 1)!!√

(2n)!

(
γ − 1

γ

)n
= c1(2n+ 1)−1/2

√
(2n− 1)!!

(2n)!!

(
γ − 1

γ

)n
≥ c2(2n+ 1)−1/2n−1/4

(
γ − 1

γ

)n

where n!! denotes the double factorial of n, the second and third equality use (2n)! = (2n)!!(2n −

1)!! = n!2n(2n− 1)!!, and the last inequality follows from results on Wallis’ integrals. Then,

π2n+1(d)
−2E

[
E[Y |D,Z]u2n+1(D,Z)

∣∣D = d
]2 ≥ cn−3/2 1

ς4n

(
γ − 1

γ

)2n

and if (γ − 1)/γ > ς2, Assumption SA-4 fails. Since (γ − 1)/γ = ς and by ς < 1, Assumption SA-4

fails.

C.2.1 Verifying conditions for the control function method

I verify Assumptions 1-6 for the above model. Note Y (d) = 1{βd ≥ X∗} so Assumption 1 Y (d) ⊥⊥

(D,Z)|X∗ trivially holds. Assumption 2 holds as Ux ⊥⊥ (X∗, D, Uz). Assumption 3 follows from

the completeness property of exponential families (see e.g., Newey and Powell, 2003). Assumption

5 can be verified using the normality assumption. For Assumption 6, letting β = ςρ
(1−ρ2)σxσd

and
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ς = (1−ρ2)σ2
x

(1−ρ2)σ2
x+1

, X|D,Z ∼ Normal(βD + ςZ, ς + 1), and ψ(d, z) = βd+ ςz satisfies (3) in the main

paper. Choosing G(x) = x will do for Assumption 6. Now, Assumption SA-3 follows from the joint

normality of (Z,D) combined with fX|DZ(x|d, z) = ϕ((x− ψ(d, z))2/
√
ς + 1)/

√
ς + 1 where ϕ(·) is

the density of standard normal.
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