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A Estimating the Number of Potential Spectators

In Fujii et al.| (2021a)), we estimated the expected number of spectators during the Olympics
period based on the maximum capacity of each venue as well as the number of tickets sold.
On April 11, the TOCOG revealed that 42 percent of the tickets for all the competition
venues had already been sold. Therefore, we estimated the number of spectators per day
by adding up 42 percent of the capacity of the venue for each match played in a day. The
estimated number of spectators was 2,866,290 for 19 days from July 23 to August 8 or
150,857 per day. The average number of spectators per day, 150,857, is slightly more than 1
percent of the population in Tokyo (13.8 million).

We also estimated the number of volunteers per day during the Olympic Games. All
volunteers are divided into two categories: Field Casts and City Casts. Field Casts are
required to work at least 10 days to support the operation of the Games. There were 80,000
Field Casts in total, of which about 10,000 had withdrawn (according to the Bureau of
Olympic and Paralympic Games Tokyo 2020 Preparation), so the remaining 70,000 would
be mobilized[[| City Casts are required to work at least 5 days to provide sightseeing and
transportation information to tourists. There were 30,000 City Casts in total and about
4,000 had withdrawn, so the remaining 26,000 would be mobilized.
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L Correctly, Field Casts were divided into Olympic and Paralympic personnel, and considering the overlap,

about 54,000 people should have been considered as the Olympic-Games volunteers.



We assumed that these 70,000 Field Casts and 26,000 City Casts work only 10 days and
5 days out of the 17 days, respectivelyf| Also, assuming that there would be an additional 10
percent cancellation of volunteers and that they would be assigned according to the number
of spectators ratio of the venue, we estimate the number of volunteers per day in Tokyo was
estimated as follows:

The number of volunteers per day

10 days 5 days the average number of spectators in Tokyo
= (26,000 70,000 0.9
(26, % 17 days + 10, % 17 days) % % the average number of spectators in all venues
150, 857
= 43,941 : = 26,000
IR omg, 499

According to this calculation, the number of volunteers for the Tokyo Olympic Games
was estimated to be 26,000 per day. The average number of spectators and volunteers per
day was 176,857 (=150,857+26,000).

This number is substantially higher than the average number of participants in other
large-scale events (including music concerts and cultural events) in Tokyo from January 1,
2021 to June 6, 2021. Figure [1| shows the distribution of the total number of participants
in large-scale events per day. We will shortly describe how we estimated the number of
participants in selected large-scale events from January 1 to June 6 in 2021 in Appendix [A.1]
The estimated number of participants per day is less than 10,000 for slightly below 50 percent
of the total day counts, possibly reflecting weekdays and a strict upper limit imposed during
the initial period of the third state of emergency. We estimated that 15,341 people per day
joined the selected large-scale events during the period on average. If we look at the average
number of large-scale event participants in Tokyo after May 12, the most recent period after
the prohibition period of spectators in place since April 25, the average number is 20,375

per day[

A.1 Large-scale events in Tokyo

We define ”large-scale events” as sports games, music concerts, or cultural events which are
expected to attract more than 1,000 people per day.

First, we considered the major sports leagues held in Tokyo: J-League (soccer), NPB
(baseball), B-League (basketball), Japan Rugby League ONE (rugby), JRA G1 Race (horse
racing), NJPW (professional wrestling), Tokyo BIG6 Baseball League (baseball), V-League
(volleyball), and GST (sumo). We obtained information on the schedule of games and the
number of spectators in these leagues by web scraping.

Next, we made a list of 40 large event venues in Tokyo with a capacity of 2,000 people or
more, because at the time, all event venues could only hold 50 percent or less of their capacity
due to an administrative order by the Tokyo Metropolitan Government. We manually looked

2Tt would have been more appropriate to assume that the volunteers operated for 19 days, including the
two days before the opening ceremony.

3We need to keep in mind that the estimated numbers of event participants are underestimated; we
selected only significant events held in Tokyo and estimated the number conservatively by multiplying 0.5
to the number of tickets sold.



Figure 1: Large-scale events in Tokyo from January 2021 to June 2021
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Source: Authors’ calculations. See Appendix [A] for details. See [Fujii et al| (2021D).

up event information from the websites of each of the listed venues and counted the number
of people mobilized. For events where the number of attendees was unknown, it was assumed
that 25 percent of the venue’s capacity would be mobilized.

Finally, we summed up the number of visitors for all the sports games, music events,
and cultural events that we had calculated earlier, and estimated the average number of
participants and spectators per day for large-scale events in Tokyo.

B Multi-group macro-SIR model

The model is formulated in discrete time with a model period being weekly. We separated
the population in Tokyo into four groups: three spectator groups for each week during
the Olympic Period (from July 23rd to August 8th) and a non-spectator group. Spectator
groups possibly increase the risk of infection depending on their activities during and after the
Games. As in [Fujii and Nakata) (2021al), the model comprises two parts: the epidemiological
part and the economic part. The main differences from [Fujii and Nakatal (2021a) are the
epidemiological part: we introduced the spectator groups that behave differently for the three
weeks of the Olympic Period. A group is indexed as j € J = {1,2,3,4} where j =1, 2, 3
denote the spectator groups for the first, second, third week of the Olympic Period and j = 1
indicates the non-spectator group, respectively.




The dynamics of the spread of COVID-19 from time ¢ to ¢t + 1 are described as follows:

Sj,t-f—l - Sj,t - Nj,t - ‘/j,t

Livrr = Ljp + Njy — Njjt = N7
Hypy = Hy+ N/ — o' H, — N[P
R = R+ NtIR +V

Dy = D, + NP

~ o~ —~ —~
W N
— — — Y~ —

5

where S;; and I;; denote the number of susceptible and infected individuals in group j at
the beginning of time ¢. Variables without subscript j denote the aggregate number over
J: Sy = ZjEJ Sje and I = Zjej I;; denote the total number of susceptible and infected
residents in Tokyo at the beginning of time t. H; denotes the number of patients in a state
of severe disease at the beginning of time t. R; and D; denote the cumulative number of
recovered patients and deaths by time ¢. For each group j € J, the total population is
denoted by POP;; and defined as follows: for any ¢,

POPjvt = Sjvt + [jvt + ijt + Dj7t' (6>

Since the definition of the populations includes the deceased patients because of Covid-19
and since we do not consider the births and deaths from other sources, the population of
each group is time-invariant: for any ¢,

POP;, = POP;,. (7)

The total population in Tokyo is denoted as POF,, which is a sum of POP; over J.
The flow variables N;¢, N ]1 R and N ]I D represent the number of newly infected, recovered,

and deceased individuals from time ¢ to time ¢t 4+ 1. They are specified as follows:

N =yl (8)

N;, NIE and N!P denote the aggregate number of each flow in Tokyo. For the inflow to the
state of recovery, v, potion of the infectious population will recover from the disease from
time t to time t + 1. We call this value the recovery rate. For the inflow to the cumulative
stock of deaths, d; denote the portion of the infected at time ¢ who passed away by the
beginning of time ¢t + 1. We refer to this ratio as a fatality rate hereafter. The inflow into
the state of severe disease is denoted as

NH = §ICU N, (10)

Here, §/°U portion of newly infected individuals is diagnosed as a severe symptomatic case

at each period. We assume that the severity rate 5V is proportional to d;:

51V = 6,6, (11)



In addition, Vj; denotes the number of people who effectively get immunity by vaccination
from time ¢ to ¢t 4 1. For each group j, Vj; is the sum of individuals who successfully obtain
immunity after each vaccination dose, which is specified as follows:

Vie=FE1V, o+ (Ea— E\) V), (12)
By the law of large number, we assume that the portion of vaccinated persons who obtain the
immunity after each dose is equal to the probability of obtaining the immunity after each
time of vaccination. We denote the probabilities of obtaining immunity for the first and
second dose by F; and FEs, respectively. We also assume that vaccination becomes effective
two weeks after the shots.

The matching function for newly infected individuals, specified as follows:

N — 7 Sit Y wes Pisklis
it =B POP,

(13)

where Bt = B (1—hay)?. Here, /5’,5 denotes the transmission rate of the disease at time ¢, and
B¢ denotes the “raw” transmission rate that actualizes if no one reduces the economic activity.
We measure the impact of the reduction of economic activity on the size of the newly infected
by mobility, m; = 1 — ha; where «; is the decline in economic activity. The coefficient h
captures the effectiveness of the economic restrictions on mobility, and the exponent k& is the
mobility elasticity of the transmission rate. The contact rate p;; represents how frequently
an individual of Group j interacts with Group k. See |Fujii and Nakata| (2021a) for a detailed
explanation of the specifications.

B.1 Calibration

As in [Fujii and Nakata| (2021a), we collected data on N;, NP, V!, V2 and Y; to construct
the paths of the variables and time-varying parameters based on the dynamics specified
above. The number of newly infected individuals, N;, and the number of new deaths due
to Covid-19 in Tokyo, N/P, are retrieved from Nippon Hoso Kyokai (NHK). The numbers
of new vaccinations for first and second doses are collected from the two sources. First, the
vaccinations from February 17th, 2021, to April 9th, 2021, are reported in the Ministry of
Health, Labour and Welfare. Since only the national level number of vaccinations in this
period is available, we distributed the number according to the population share of each
prefecture. Second, the number of cumulative vaccine shots for each prefecture is updated
on the Prime Minister’'s Office of Japan website. We compute the difference of the two
sequential updates every week as the number of new vaccinations for a particular week. In
addition, the Prime Minister’s Office of Japan also reported the number of elderly people
(aged 65 or older) who receive vaccinations at the national level. We use this elderly share
at the national level to impute the number of vaccinated elderly people in Tokyo. Economic
output, Y;, is computed based on monthly estimates of real GDP reported by the Japan
Center for Economic Research.

To retrieve the dynamics of the model variables, we impose the following initial condi-
tions: Sy = 13,820,00, Ip =0, Ry = 0, and Dy = 0. Sy is based on the population of Tokyo



Table 1: Parameter Values

Variable Symbol Values Target
Recovery rate y 7/12 12 days
Recovery rate

from severe case 7 7/28 28 days
Effectiveness of first vaccination B 0.625 SPI-M-O Summary
(risk of infection) ! ’ (March 31st, 2021)
Effectiveness of second vaccination E 0.895 SPI-M-O Summary
(risk of infection) 2 ' (March 31st, 2021)
Effectiveness of first vaccination D 0.8 SPI-M-O Summary
(risk of death and severe case) ! ' (March 31st, 2021)
Effectiveness of second vaccination D 0.94 SPI-M-O Summary
(risk of death and severe case) 2 ’ (March 31st, 2021)
Size of first-week visitor n {542860, 336430}
Size of second-week visitor N {1608824, 895412}
Size of third-week visitor ns {1208606, 695303}
Probability of going straight home P {0.2,0.5,0.8}
Probability of high-risk restaurants q 0.4

in 2019. The recovery rate from the infectious population group to the recovered group, v,
is set to 7/12, targeted to the average duration of staying the infectious population as 12
days. Similarly, the recovery rate from severe case, v, is set to 7/28, targeted to the average
duration of 28 days. The effectiveness of first and second vaccinations in reducing infection
risk, E; and FEs, are set to 0.625 and 0.895, respectively. These values are obtained from
the SPI-M-O’s Summary report (March 31st, 2021) on the website of the Government of the
UK. In addition, we set the mobility elasticity of the transmission rate to 2.0 based on the
quadratic matching assumption. These predetermined parameters are reported in Table [I}

Based on the initial conditions, the predetermined parameters, and the dynamics spec-
ified in eq.(1]) — eq.(13), the time-varying parameters &, 6;, B¢, oy, and hy are retrieved as
discussed in [Fujii and Nakata| (2021al). As mentioned above, there is no difference among
the four groups until the Olympic Games starts. Hence, we set p;, = 1 when we recover
the paths of model variables and time-varying parameters from January 2020 to the time of
analysis (second week of June 2021).

We use our model to projects the spread of Covid-19 and economic activities during the
Olympic period. The initial period of the simulation is the third week of June, denoted as
T. The initial values of St, I, Ry, and D are obtained as the last period values from the
previous section. The projected path of fatality rates d;, the severity rate 6;, and the raw
transmission rate (3; are determined in a way that is similar to how those projections are set
in [Fujii and Nakatal (2021a)). The details are discussed in Appendix [B.2]

When the Olympics start, our model is no longer equivalent to a single-group model, as
spectator groups visit the competition venues and spread the disease relative to the rest of the
population. Let 77, T5, and T3 denote a particular week when group j (j = 1,2, 3) visits the
venues, respectively. We model this relative difference in risk of infection and transmission by
pi,j, a contact rate from group 7 to group j. The contract rates are separated into two types:
diagonal elements p;; and off-diagonal elements p; ; (i # j). Diagonal elements represent



the risk of transmission and infection increase by interaction within a spectator group on a
particular week. Off-diagonal elements represent the effects of the increased risk of infection
that the non-spectator groups j # i face by the increased mobility of the spectator group ¢
at time T;. These off-diagonal elements should be non-symmetric: the risk exposure should
increase by the behavior of a spectator group but not by the rest of the population. Hence,
we assume that p;; > 1 and p;; = 1 at time 7;. Note that p,; = 1 if ¢t # T} as there is no
heterogeneity except at the time of visiting the venues.

We compute the difference of the two sequential updates every week as the number of
new vaccinations for a particular week. In addition, the Prime Minister’s Office of Japan
also reported the number of elderly people (aged 65 or older) who receive vaccinations at
the national level. We use this elderly share at the national level to impute the number of
vaccinated elderly people in Tokyo.

B.2 Details on projected paths of infection rates and fatality rates

This section explains how we obtain the paths of the fatality rate J; and the raw transmission
rate (3; used in a simulation.

As in|Fujii and Nakatal (2021al), we retrieved the average values over the most recent four
months as the baseline, but using the simple average for a simulation might suffer from bias if
some trends exist over time. For instance, if infectivity become weaker as time passes, using
the simple average of the past raw transmission rates is likely to overestimate the infection
in a simulated path. This overestimation can be decomposed into the two channels: the lack
of adjustment in the past values and in the simulated paths. Hence, to correct this type of
bias, we first need to eliminate these trends when we obtain the past four-month average of
parameters of interest. Then, we need to apply these trends in the simulated paths based on
the simulated paths of the trends. In this paper, we assume that the existence of variants
and vaccination affect §; and ;.

The simulated values of §; and d; at time ¢ can be expressed as

17

/8T+1—7' . .
= * Variant Effects; * Vaccine Effects
B ; Variant Effectsy.;_, * Vaccine Effectsry; K K
and
17 5
O = THir * Variant Effects; * Vaccine Effects
¢ ; Variant Effectsy, i, * Vaccine Effectsp. i, ¢ ¢

where T' denotes the last period before the simulation starts. In addition, we modify the
above equations in three ways. First, we have already considered the vaccine effects for 5; by
subtracting the effectively vaccinated individuals from the susceptible population. Therefore,
we did not include the vaccine effects for ;. Second, the treatment of the vaccine effects
at each period is difficult because of data availability. Hence, we assume the linear trend of
vaccine effects.

Third, we use the average fatality rate weighted by the infectious population. One



potential problem of using the sample average for §; lies in a lag between new deaths and
the size of the infectious population. Because of the lag, the fatality rate J; tends to be
high when [; starts decreasing after a peak, and d; is low when [; increases. To adjust
this potential bias, we compute the average fatality rate weighted by the proportion of I;
in the sampling period. Note that without the adjustment of variant effects, this weighted
average is equivalent to the share of all deaths among the sum of infectious population in
the sampling period:

17
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where § represents the weighted average of the fatality rates.

Below, we first discuss how to eliminate the variant effects from the past values of ;
and ¢;. Next, we explain the vaccine effects in detail. Lastly, we show the resulting simulated
paths for 5; and 9,.

To adjust the effects of Alpha and Delta variants, two things are noted. First, Delta
variant had not yet spread in Japan at the time of analysis, so we did not adjust Delta-variant
effect in the past values. Based on the screening test for the L452R variant in Tokyo, the share
of positive cases are 3.2% between June 7th and June 13th (Tokyo Metropolitan Government],
2021)). Second, we assume that Alpha variant is dominant by the the first incidence of Delta
variant. By assuming so, we abstract from modeling the original strain of virus when we
introduce the effects of Delta variant. Based on the assumption, we eliminate the effects of
Alpha variant from ; and J; in the sampling period using the following equations:

B = B/ (1 +pir) (14)
07 = 6/ (1 + pi'rg) (15)

7
1—q IT+1_7—/ IT+1—T

where pf* is the share of Alpha variant, r® is the relative infectivity of Alpha variant to the
original strain of virus, and 7§ is the relative fatality of Alpha variant. We set r* = 0.3 and
rg = 0.4.

For the effects of vaccination, we assume that vaccination reduces the spread and deaths
associated with COVID-19 through three channels:

a). Infection prevention effects: vaccination reduces the number of newly infectious people
at each period by reducing the risk of infection and transmission,

b). Death prevention effects: a vaccinated individual faces a lower fatality rate conditional
on infection, and

c¢). Composition effects: the targeted vaccination for a high-mortality group such as the



elderly would reduce the fatality rate on average by reducing the ratio of the high-
mortality group in the infectious population.

We model the infection prevention effects by the reduction of the susceptible population as
described in the dynamics of S;. Hence, no adjustment to (; is needed as discussed above.
To adjust the fatality rate conditional on infection, we need to adjust the second and third
channels. However, we abstract from the second effect: to compute the death prevention
effect, we need to know the number of infected individuals for each vaccination dose, which is
not available. Considering that not many vaccine receivers would be infected, the abstraction
would not have large quantitative impacts.

For the composition effects, we did not adjust the past values of the fatality rate but
rather adjusted the weighted average of the past values assuming a linear trend. To be
precise, we need to adjust each value of §; before taking the average and obtain the average of
these adjusted values. Without the adjustment, the past averages did not take the reduction
of the fatality rates in the past weeks into account and, thereby, are overestimated. However,
it is difficult to make such an adjustment because of the existence of a lag between the
infection and death and a lack of data regarding the number of deaths by age and by the
number of vaccination. In addition, the effects of vaccination at the time of analysis would
not be large considering that only less than 20% of population receives vaccination and the
lag of effectiveness. Therefore, we believe that abstraction from the adjustment to each of
the past values has quantitatively small effects.

To determine the path of the composition effect for §;, we made the following two
assumptions. First, the declines of the fatality rates are faster initially until individuals aged
65 or older finish receiving the vaccination. Second, the fatality rate approaches to zero
as the number of people receiving the vaccination increasesﬁ Based on these assumptions,
we model the decline of the fatality rate due to the vaccination as the sum of two linear
functions. In the first stage, the prioritized vaccination to the elderly reduces the fatality
rate by reducing the share of the elderly among the infectious population. In the second
stage, the vaccination to the young population reduces the fatality rate to zero if everyone
receives the vaccination and if the vaccines are fully effective.

Hence, the path of the vaccine-adjusted fatality rate is expressed as the following;:

0 = (1 —v7) (00 — 0ss) + (1 — vf)0ss (16)
where

e ,tau

Uy

Y Dy, + (Dy — D)V

Popj

denotes the number of the elderly who are effectively prevented from deaths because of the

4In reality, after the prioritized vaccination to the elderly ends, the fatality and severity rates are likely
to increase. This is because as more and more young individuals receive the vaccination, the share of young
individuals among the infectious population would increase. Therefore, the share of old individuals among
the infectious population rises, which increase the fatality and severity rates. The assumptions made here
are valid if all the population receive the vaccination.



vaccination,
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is the number of young individuals who are effectively prevented from deaths because of the
vaccination, D; denotes the effectiveness of ith vaccination in the reduction of death and
severe conditions, Vft is the number of individuals who receive ith dose of vaccinations in
age group j € {y, e}, Popﬁ represents the population size in each age group 7, dy is the initial
fatality rate that prevails in an economy if no one receives a vaccination, and ¢, indicates
the fatality rate after all individuals aged 65 or older are effectively prevented from death
due to vaccination, which is computed as

Fatality rate of youth

588 = 0p X . 5
0 Fatality rate of total population

= )\(50,

We set A to 0.1063/1.53 for the fatality rate and to 0.3692/1.62 for the severity rate based
on Ministry of Health, Labour and Welfare (2021 and Nishiura (2021a)).

In this specification, we observe that if all the elderly are effectively prevented from
death by Covid-19 and if no individuals in the non-elderly group receive a vaccination, the
fatality rate is equal to the fatality rate among the non-elderly group as discussed above:
ie.,

t—2 t—2
0y — 0gs S Z VS — Pop; and Z VY=0.
T=1 T=1

Similarly, if every individual is effectively prevented from deaths due to Covid-19, no one
will die of Covid-19: i.e,

t—2 t—2
d — 0 as Z V¥ — Popy and Z V¢ = Popj,.
T=1 T=1

Based on the specification in eq. , we have enough information to determine d;
except for 9. However, we have the information regarding the past fatality rates. Hence, we
can retrieve dy from the weighted average of variant-adjusted fatality rates 6 and eq.
by assuming that § represents the fatality rate at the end of the data period T

8o = 6 + V5 (8g — 6s8) + V408
= 0 + v5(do — Ado) + V4o
=0 + So{v5(1 — \) + v¥A}

and, thereby, -

)
T 1o (I—A) + oA
From eq. and eq. , we can retrieve the path of fatality rates adjusted by the

9o (17)

9



composition effect of vaccination.
Based on the past average, the composition effect of vaccination, and the effect of Alpha
and Delta variant, our simulated path of 3; and d; are computed as follows:

B = B+ pir*) (1 +pir’)
0 = {(1 = v§)(do — dss) + (1 — v)dss } (1 + pfrd) (1 + pirg)

where f3 is given by the four-month average of 52 in eq. , 0o is given by eq. based
on the weighted average of variant-adjusted fatality rate, p is the share of Delta variant, r°
is the relative infectivity of Delta variant to Alpha variant, and rJ is the relative fatality of
Delta variant. We set r* = 0.2 and r§ = 0.

B.3 Elements of Contact Matrix

In this appendix, we discuss the calibration methods of contact matrix P;. Briefly speaking,
we compute how the infection risks will be increased if spectators visit restaurants after
watching the Olympic Games based on Chiba’s method. We impose several assumptions for
simplicity. First, we assume that the spectators increase the infection risk among the rest
of population only through the interaction at restaurants and bars. Hence, if spectators go
straight home after the Games on a particular day, the infection risk will not be increased.
Second, we assume that there exist two types of restaurants and bars: low-risk and high-
risk. Let p denote the ratio of spectators in group ¢ who go straight home and 1 — p denote
the ratio of spectators in group 7 who dine at restaurants. Also let ¢ be the ratio of high-
risk restaurants in Tokyo. Therefore, the increase in infection risks owing to the spectators
depends on the number of spectators visiting either type of restaurant, determined by the
number of spectators n; (j € {1,2,3}), the probability of dine at restaurants p, and the ratio
of high-risk restaurants q.

We first discuss how these parameters determine the off-diagonal elements p;;, (i # j)
at time 7} and then move to the explanation of the determination of the diagonal elements
Piit at time E

The off-diagonal element py 7, (i # j) reflects the relative increase of infection risks
for susceptible population among non-spectator group ¢ owing to the increased mobility of
spectator group j at jth week of the Olympics. In particular, we assume that (1 —p) portion
of spectators visit restaurants after watching the games. Among them, ¢ potion of them dine
at high-risk restaurants, whereas (1 — ¢) of them visit low-risk restaurants. These increase of
the people at the restaurants increase the infection risks for non-spectators who happened
to visit these places.

Chiba (2021) quantifies the infection risk considering the number of interactions at these
locations. In particular, she quantifies the infection risk of a representative agent by summing
up the risk factors in six types of locations: home, workplace, school, high-risk restaurants,
low-risk restaurants, and other miscellaneous places. The risk factor at each location is
calculated as the product of relative infection risk per interaction and the expected number

10



of interactions at the location. Specifically, the quantified risk is computed as

Infection Risk, = Z Infection Risk per Interaction,, * K[Number of Interaction,| (18)
el

where L = {home, workplace, school, high-risk restaurants, low-risk restaurants, others}. Based
on Chiba’s estimate, we set the relative infection risks per interaction at home, workplace,
school, high-risk restaurants, low-risk restaurants, and others to 0.8, 0.04, 0.075, 25, 2, 0.3,
respectively. We assume that these relative infection risks per interaction at these locations
are fixed regardless of whether the Olympic Games are held.

The expected number of interactions at each location is calculated as the product of the
number of average people to interact per visit at the location and probability of visiting the
location:

E[Number of Interaction, (] = Average Interactions per Visit, , + P(Visiting Location, ,).

(19)
We assume that the expected number of interactions at location ¢ do not change over time
except for high- or low-risk restaurants; we fix the expected number of interactions at home,
workplace, school, and other miscellaneous places at 2.25, 10, 0, 4.5, respectively. The
expected number of interaction at high- or low-risk restaurants before and after the Olympics
are set to 0.065 and 0.0585, respectively. Based on these numbers, the quantified infection
risk of a representative agent during the normal time is equal to 4.668 from eq. and eq.
1)

During the Olympics, the expected number of interaction at high- and low-risk restau-
rants will increase as we assume that some fractions of spectators will visit these restaurants
after watching the games. The increase in infection risks for the non-spectator group, the
off-diagonal element, is solely from the increase in the number of average people to inter-
act per visit at high- and low-risk restaurants. We assume that the the number of average
people to interact per visit during the Olympics will be increased by (1n/POF)(1 — p)q
for high-risk restaurants and by (n/POPR)(1 — p)(1 — q) for low-risk restaurants, where
n = (ny + ny + n3)/19 is the average number of spectators per day. Hence, the number of
average people to interact per visit at high-risk restaurants during the Olympics is given by

Average Interactions per Visitoympics Period, High (20)
= (n/POPR)(1 — p)q + Average Interactions per Visityomal Time High-

Similarly, the number of average people to interact per visit at low-risk restaurants during
the Olympics is given by
Average Interactions per Visitoympics Period, Low

21
= (n/PORy)(1 —p)(1 — q) + Average Interactions per Visityomal Time Low- (21)

The average number of interactions in high- and low-risk restaurants during the normal time
is set to 4.

Based on eq. , eq. , eq. , and eq. , we can calculate the increases in

infection risks for the non-spectator groups, or the off-diagonal elements, by assuming that
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Figure 2: The Composition of Diagonal Elements

the non-spectator groups do not alter the probability of visiting high- or low-risk restaurants
between the normal time and the Olympic Periods. By assuming the same probability
of eating out at a particular type of restaurants, we can compute the relative increase of
infection risks solely from the increase of customers at these places due to a spectator group.

Next, we discuss how the diagonal elements p;; 7 are determined. This diagonal element
implies the relative increase of infection risks among spectator group 7 at the ith week of
the Olympics. We further decompose the spectators into three groups. The first group
is the people who go straight home after watching the games. They face higher infection
risks than non-spectators through the interaction at the venues. The relative strength of
infection risk at the venue is denoted by kyg. The second group is the spectators who visit
high-risk restaurants after watching the games. They face the risks of kg, which represents
the infection risk conditional on that the visit of high-risk restaurants. Hence, this value is
computed based on Chiba’s model described above by assuming that the probability of going
to high-risk restaurants is unity. Similarly, the third group is composed of the spectators
who visit low-risk restaurants after watching game, facing the risk of xyr. The conditional
increase in infection risk of the third group, kg, is calculated by assuming that they visit
low-risk restaurants for sure. The decomposition of the diagonal elements of the contract
matrix is shown in Figure [2]

Based on kyg,kgr, and kpr, we can compute the diagonal elements as the mean of
these values based on the probability of going straight home, p, and the probability of eating
at high-risk restaurants conditional on eating out, g. The expected increase of the infection
risk among spectator group ¢ compared to the rest of the population at the ith week of the
Olympics, which is the diagonal element p;; 1, can be written as

1 6
Pii T, = - (pknr+ (1 —p) (¢kar + (1 —q) kLr)) + - (22)
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Here, we assume that, on average, 1/7 portion of group i visit the venues on a particular day
of their tickets.

C Background

Some inquisitive readers must have already wondered why a team of economists ended up
analyzing the effects of the Olympic and Paralympic Games on COVID-19 to begin with.
Before explaining the context of our analyses of the Games, we first explain why.

As the third wave of infection started to gain momentum in Tokyo in December 2021,
the government started to discuss the possibility of issuing the state of emergency (SOE),
which would become the second SOE issued in Tokyo during the COVID-19 crisis with
the first one being the one in April and May 2020. However, there was no quantitative
analysis available to the public of how the second SOE would mitigate the rise of infection
or affect economic activity. To be able to investigate such a question, two of the authors of
this present paper—Daisuke Fujii and Taisuke Nakata—developed a model that combines a
standard SIR model and a simple production function and estimated key parameters of the
model using data in Tokyo. In early January 2021 after the government issued the SOE and
infection started to come down, we used the model to analyze how the timing of departure
from the SOE would affect the course of infection and economy (Fujii and Nakatal (2021a))).
Our analysis found that the presence of a short-run trade-off between infection control and
economy did not necessarily imply the existence of trade-off in the medium- and long-term
and that it would be possible for the government to achieve lower cumulative COVID-19
deaths and smaller economic loss by maintaining the current SOE until infection declines to
a very low level—perhaps around 100 or 200 new cases per day.

Our analysis resonated well with the public and policymakers in Japan who wanted a
framework to think about how to balance infection control and economic activity. Many
perceived the aforementioned implications of our analysis as sensible. Furthermore, our
approach of weekly updating the outlook on COVID-19 and economy reflecting incoming
data—as well as our communication style in which reports were written in plain languages
so that non-experts can easily understand—was novel in the context of experts’ analyses
during the COVID-19 crisis in J apanE] In February, media started to frequently report our
analysis and we started to receive inquiries from the government and public-health experts.

While we initially expected that our main contribution was to develope a framework to
think about how to balance infection control and economic activity, we soon realized that
our outlook on COVID-19 itself was a contribution. In March, we started to receive requests
for analyses from the government as well as public-health experts, and many of the requests
were purely about projecting infection under various scenarios. The public also started to
focus on our COVID-19 outlook, instead of our analysis of how to balance infection control
and economic activities.

Behind this increased demand for our analysis was the absence of medium-term COVID-
19 outlook provided by the government and public-health experts in Japan. As discussed in
Fujii and Nakata) (2021b) and Nakata (2021)), throughout 2021, weekly reports provided to

A regular update of an outlook is common in central banking community in which one of the authors
had spent most of his career.
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the Advisory Board on COVID-19 for the Ministry of Health, Labor, and Welfare featured
short-term, mechanical outlook that abstracted from vaccination, mobility measures, and
variants of concern, except for a brief period of time[f| Our weekly reports as well as other
COVID-19 reports filled in the gap in the analytical system for Japan’s COVID-19 policy.

D Related Analyses

D.1 Before the Games

Several studies came out in mid-June that investigated the effects of allowing spectators as
well as the aforementioned indirect effects of hosting the Games on infection.

On June 16, Furuse et al.| (2021a)) presented scenario analyses showing various possibili-
ties about how the Games would affect infection in Tokyo. Their main focus was quantifying
the indirect effects, but they also analyzed spectator effects by assuming that spectators
would increase mobility in Tokyo one percentage point.

On June 17, Kurahashi (2021)) released a report that used an estimated SEIR model to
examine the effects of out-of-state Olympics-spectators on Tokyo’s infection. He concluded
that allowing spectators at full capacity can increase the number of daily new cases by about
20 percent. His results are quantitatively similar to our finding in June-17 report.

On June 18, the Cabinet Office released a report summarizing the findings of several
simulations studies on spectator and indirect effects, including our May-21 simulation, Furuse
et al.| (2021a) and Kurahashi (2021) (Office (2021))). Most studies concluded that, if the
Games were to contribute nontrivially to an increase in the mobility of people in Tokyo
areas, that could nontrivially contribute to the spread of COVID-19.

On June 18, a group of public-health experts—A Voluntary Independent Group of Ex-
perts for COVID-19 Response in Japan—released a report called “Recommendations about
COVID-19 risks related to holding the 2020 Tokyo Olympic and Paralympic Games” and
handed the report to relevant parties including the Tokyo Organizing Committee of the
Olympic and Paralympic Games and the Prime Minister[] The report emphasized indirect
effects of the Games, echoing key takeaways from our May-21 and June-17 and using our
simulation results in the May-21 report as well as [Furuse et al.| (2021a)) to support their key
messages [

6See, for example, [Nishiura (2021b), Nishiural (2021c), [Furuse, (2021b), [Furuse et al.| (2021a), Furuse et al.
(2021b)), and |[Furuse, (2021a)) for those exceptions. It is useful to note that the team of simulation experts
under the Al & Simulation Project of the Cabinet Office—which provided weekly outlook in the second half
of 2021—provided outlook much less frequently during the first half of 2021. Thus, often time, the outlook
our team provided was the only outlook the public can count on. Behind the absence of COVID-19 outlook
was the lack of proper investment in research on mathematical epidemiology prior to the COVID-19 crisis.
According to [Inabal (2021), a mathematician specialized in population dynamics and epidemiology at the
University of Tokyo, “research on mathematical epidemiology is very outdated in Japan. There are no proper
textbooks nor university courses on this topic. The COVID-19 crisis exposed this weakness.”

"https://corona.go.jp/minister/pdf/kishakaiken_shiryo_20210618.pdf

8They used the term “contradictory messages” to refer to what we call “indirect effects.”
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D.2 After the Games

After the closing ceremony of the Paralympic Games, four research papers came out that
estimated the effects of the Games on infection in Tokyo.

Linton et al.| (2021)) present a simulation study—which they suggest that they conducted
a week before the Tokyo Olympics began—demonstrating that the effect of allowing spec-
tators on infection would have been limited, a finding that confirms various analyses before
the Games, including our analyses and those of |[Furuse et al. (2021al) and Kurahashi| (2021]).

The other three papers are those that aimed to causallly estimate the effect of hosting
the Gmaes on infection using synthetic control methods discussed in the main body of the
paper. See Esaka and Fujii (2021), [Yamamoto et al.| (2022), and Yoneoka et al.| (2022]).

E Identification Challenges of the Indirect Effect

Quantifying the indirect effect of the Games on COVID-19 is challenging because it is dif-
ficult, if not impossible, to credibly estimate the causal effects of hosting the Games on
people’s behaviors. With this caveat noted, we will discuss some anecdotes and facts.

On the one hand, there exists anecdotal evidence that people might have become less
cautious with infection during the Games. According to social media and television media
coverage, some bars and restaurants were crowded with few people wearing masks. People
gathered on streets to watch some Olympic events that took place on public roads (for ex-
ample, marathons and road bikes). These stories suggest that the Games indeed might have
promoted festive moods among Tokyo residents and contributed to the spread of COVID-19.

On the other hand, some have argued that the Games induced people to stay home to
watch the Games on television. Some measures of mobility before and during the Olympic
Games—shown in Figure [B}—are qualitatively in line with such an argument. The “Stay-
home” index rose after the Olympic Games started. Google Mobility (retail and recreation)
and night-time population in central Tokyo declined more than they did in the previous
year after the Games started. Google Mobility (residential) rose more on average than in
the previous year. However, it is difficult to draw a firm conclusion as different mobility
data suggest different quantitative relevance. The difficulty of drawing a firm conclusion
is exacerbated by the fact that, during the Olympic Games, the number of new cases rose
rapidly in Tokyo and ICU beds became scarce, which likely caused people to stay home
regardless of whether the Olympic Games took place.

Another factor that makes it challenging to quantify the indirect effect of the Game
on infection is that Japanese people seemed to have mixed and complex feelings about the
Games. According to the poll conducted by Asahi newspaper a few days before the Olympic
Games started, 55 percent were against hosting the event while 33 percent were in favor
(Asahi Simbun|, 2021)). Yet, a study shows 56 percent of households with TV watched the
opening ceremony (Video Research Ltd., [2021)). After the Olympic Games, polls show that
60 percent of people thought that the Olympic Games contributed to the spread of COVID.
Yet 64 percent felt positive about having hosted the Games and only 25 percent felt the
Games should have been canceled (Yomiuri Shimbun, 2021). Given these mixed feelings
among Tokyo residents, any calculation regarding how people would have behaved under the
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counterfactual of no Games is likely to be highly speculative.

F Ex-post assessments by public-health experts

In this subsection, we discuss ex-post assessments by public health experts of the effects of
the Olympic Games on infection.

At the Fifth Round-table Meeting with Experts that took place on August 20, 2021
in which we presented our August-20 report, the TOCOG presented a detailed report on
COVID-19 infection during the Olympic Gamesﬂ The TOCOG report pointed out that the
actual number of infections was below that was predicted by ex-ante simulation studies—one
of which was our May-21st report—and emphasized the success of various infection control
measures taken in the Olympic Village and at competition venues. In a press conference
after the Meeting, Nobuhiko Okabe, Chair of the Round-Table, assessed that there was no

9See  https://www.2020games.metro.tokyo.lg.jp/docs/hET%ACHAC2LESYIBYIELES%ID%B1%LEAYBAY
AC2020%E5%A4%,AT,EAY,BC/LIAYESY96%8BLES%82%AC,LESY,83%BD%ESY,B8%82%E6%9CLACKES,83%A8%E4A)BCY9AY
E87,ADY%BO . pdf
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major spillover of infection from the Games-related staff and foreign visitors, yet cautioned
that, given that the number of daily new infection was much higher than the level before
the Olympic Games started, the same infection control measures might not lead to as much
success during the Paralympic Games (M3.com| (2021))).

On August 12, a day before the Closing Ceremony of the Olympic Games, Shigeru Omi—
Chair of the Advisory Committee on the Basic Action Policy—stated that it was “absolutely
clear” that several infections at the competition venues did not play an important role in
the rapid rise in infection since late July (Omi| (2021))). He also pointed out various factors
that had been present even before the Olympic Games began—including the emergence of
the Delta variant—which contributed to the rise of infection . However, he also emphasized
that, even though he had not seen any formal analyses, he believed that the Olympic Games
had an effect on people’s “awareness” (Chuo-Koron| (2021))).

In early September, Hiroshi Nishiura—an epidemiologist who provided various simula-
tion analyses to the Advisory Board on COVID-19 of the Ministry of Health, Labour, and
Welfare throughout the COVID-19 crisis and who called for cancellation of the Games in
media on numerous occasions—stated that he knew that there would be not much risk at
competition venues and that it was clear that mobility and contact among people did not
materially increase during the Olympic Games (Ronza| (2021) and BuzzFeed (2021)). For
the indirect effect, he stated that there was no doubt that the main effect of the Olympic
Games was psychological, while acknowledging the difficulty of quantifying such psycholog-
ical effects.

All in all, consensus among public-health experts seems to be in line with our assessment
that the direct effect of welcoming foreign visitors was limited and that it is difficult to
evaluate the indirect effects, though public-health experts tend to emphasize the possibility
that the indirect effects might have been large, instead of the possibility that the indirect
effects might have been small, in their communication with the public.
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